
Tara C Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8974972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When measles came to class: a look back at the 1989 Kent State University measles epidemic. Microbes and Infection, 2022, 24, 104885.	1.0	Ο
2	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission Dynamics Should Inform Policy. Clinical Infectious Diseases, 2021, 73, S170-S176.	2.9	102
3	COVID-19 Vaccine Acceptance: We Need to Start Now. Open Forum Infectious Diseases, 2021, 8, ofaa658.	0.4	8
4	Digging the rabbit hole, COVID-19 edition: anti-vaccine themes and the discourse around COVID-19. Microbes and Infection, 2020, 22, 608-610.	1.0	17
5	Risk of nasal colonization of methicillin-resistant Staphylococcus aureus during preparation of contaminated retail pork meat. Microbial Risk Analysis, 2020, 16, 100136.	1.3	6
6	Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers. PLoS ONE, 2020, 15, e0232913.	1.1	34
7	To Tweet or Not to Tweet—a Review of the Viral Power of Twitter for Infectious Diseases. Current Infectious Disease Reports, 2020, 22, 1.	1.3	30
8	Staphylococcus aureus Epidemiology in Wildlife: A Systematic Review. Antibiotics, 2020, 9, 89.	1.5	47
9	Headlines and hashtags: communicating science during an outbreak. Microbes and Infection, 2020, 22, 508-510.	1.0	2
10	Title is missing!. , 2020, 15, e0232913.		0
11	Title is missing!. , 2020, 15, e0232913.		ο
12	Title is missing!. , 2020, 15, e0232913.		0
13	Title is missing!. , 2020, 15, e0232913.		Ο
14	Title is missing!. , 2020, 15, e0232913.		0
15	Title is missing!. , 2020, 15, e0232913.		О
16	Prevalence and Molecular Characterization of Staphylococcus aureus and Methicillin-resistant S. aureus on Children's Playgrounds. Pediatric Infectious Disease Journal, 2019, 38, e43-e47.	1.1	9
17	Prevalence of Staphylococcus aureus and methicillin-resistant S aureus on environmental surfaces in Ohio nursing homes. American Journal of Infection Control, 2019, 47, 1415-1419.	1.1	6
18	Multidrug-resistantStaphylococcus aureusColonization in Healthy Adults Is more Common in Bhutanese Refugees in Nepal than Those Resettled in Ohio. BioMed Research International, 2019, 2019, 1-11.	0.9	12

#	Article	IF	CITATIONS
19	Science Should Drive Vaccine Policy. JAMA Network Open, 2019, 2, e1910170.	2.8	о
20	Characterizing the molecular epidemiology of Staphylococcus aureus across and within fitness facility types. BMC Infectious Diseases, 2019, 19, 69.	1.3	10
21	Bhutanese refugees resettled in Ohio show decreased diversity of coagulase-negative Staphylococci compared to refugees in Nepal. Travel Medicine and Infectious Disease, 2019, 31, 101336.	1.5	Ο
22	Comparison of livestock-associated and community-associated Staphylococcus aureus pathogenicity in a mouse model of skin and soft tissue infection. Scientific Reports, 2019, 9, 6774.	1.6	11
23	The nasal and oropharyngeal microbiomes of healthy livestock workers. PLoS ONE, 2019, 14, e0212949.	1.1	18
24	Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Annals of the New York Academy of Sciences, 2019, 1441, 17-30.	1.8	112
25	Critically important antibiotics: criteria and approaches for measuring and reducing their use in food animal agriculture. Annals of the New York Academy of Sciences, 2019, 1441, 8-16.	1.8	88
26	Longitudinal Case Series of <i>Staphylococcus aureus</i> Colonization and Infection in Two Cohorts of Rural Iowans. Microbial Drug Resistance, 2018, 24, 455-460.	0.9	2
27	Prevalence and molecular characterization of Staphylococcus aureus from human stool samples. Antimicrobial Resistance and Infection Control, 2018, 7, 42.	1.5	19
28	Pig Movement and Antimicrobial Use Drive Transmission of Livestock-Associated Staphylococcus aureus CC398. MBio, 2018, 9, .	1.8	6
29	Whole-Genome Analysis of Recurrent <i>Staphylococcus aureus</i> t571/ST398 Infection in Farmer, Iowa, USA. Emerging Infectious Diseases, 2018, 24, 153-154.	2.0	17
30	Geographic distribution of livestock-associated Staphylococcus aureus in the United States. Microbes and Infection, 2018, 20, 323-327.	1.0	9
31	Staphylococcus aureusin the nose and throat of Iowan families. Epidemiology and Infection, 2018, 146, 1777-1784.	1.0	8
32	Prevalence and molecular characterization of Staphylococcus aureus in commercially available meat over a one-year period in Iowa, USA. Food Microbiology, 2017, 65, 122-129.	2.1	57
33	Environmental contamination with Staphylococcus aureus at a large, Midwestern university campus. Science of the Total Environment, 2017, 599-600, 1363-1368.	3.9	18
34	Characterization of Staphylococcus aureus in Goose Feces from State Parks in Northeast Ohio. EcoHealth, 2017, 14, 303-309.	0.9	16
35	Assessing the potential for raw meat to influence human colonization with Staphylococcus aureus. Scientific Reports, 2017, 7, 10848.	1.6	14
36	Vaccine Rejection and Hesitancy: A Review and Call to Action. Open Forum Infectious Diseases, 2017, 4, ofx146.	0.4	139

Tara C Smith

#	Article	IF	CITATIONS
37	Prevalence and Characterization of <scp><i>Staphylococcus aureus</i></scp> and Methicillinâ€Resistant <scp><i>Staphylococcus aureus</i></scp> on Public Recreational Beaches in Northeast Ohio. GeoHealth, 2017, 1, 320-332.	1.9	30
38	Medicine in the Antibiotic Apocalypse. Journal of Microbiology and Biology Education, 2017, 18, .	0.5	0
39	A Novel Methicillin-ResistantStaphylococcus aureust11469 and a Poultry Endemic Strain t002 (ST5) Are Present in Chicken in Ebonyi State, Nigeria. BioMed Research International, 2017, 2017, 1-5.	0.9	17
40	O'Connor et al. systematic review regarding animal feeding operations and public health: critical flaws may compromise conclusions. Systematic Reviews, 2017, 6, 179.	2.5	2
41	Equations of the End: Teaching Mathematical Modeling Using the Zombie Apocalypse. Journal of Microbiology and Biology Education, 2016, 17, 137-142.	0.5	9
42	Prospective multicenter surveillance identifies Staphylococcus aureus infections caused by livestock-associated strains in an agricultural state. Diagnostic Microbiology and Infectious Disease, 2016, 85, 360-366.	0.8	4
43	On the path to untreatable infections: colistin use in agriculture and the end of â€~last resort' antibiotics. Expert Review of Anti-Infective Therapy, 2016, 14, 785-788.	2.0	16
44	Livestock-Associated MRSA and Its Current Evolution. Current Clinical Microbiology Reports, 2016, 3, 19-31.	1.8	76
45	Detection of Airborne Methicillin-Resistant <i>Staphylococcus aureus</i> Inside and Downwind of a Swine Building, and in Animal Feed: Potential Occupational, Animal Health, and Environmental Implications. Journal of Agromedicine, 2016, 21, 149-153.	0.9	28
46	The Efficiency of Biofilters at Mitigating Airborne MRSA from a Swine Nursery. Journal of Agricultural Safety and Health, 2015, 21, 217-227.	0.3	9
47	Zombie infections: epidemiology, treatment, and prevention. BMJ, The, 2015, 351, h6423.	3.0	8
48	Association between microbial characteristics and poor outcomes among patients with methicillin-resistant Staphylococcus aureus pneumonia: a retrospective cohort study. Antimicrobial Resistance and Infection Control, 2015, 4, 51.	1.5	5
49	Human Infections with Staphylococcus aureus CC398. Current Environmental Health Reports, 2015, 2, 41-51.	3.2	57
50	Zoonotic Diseases of Swine: Food-borne and Occupational Aspects of Infection. , 2015, , 23-68.		0
51	Livestock-Associated Staphylococcus aureus: The United States Experience. PLoS Pathogens, 2015, 11, e1004564.	2.1	104
52	Epidemiology of necrotizing infection caused by Staphylococcus aureus and Streptococcus pyogenes at an Iowa hospital. Journal of Infection and Public Health, 2015, 8, 634-641.	1.9	16
53	Comparative Effectiveness of Beta-Lactams Versus Vancomycin for Treatment of Methicillin-Susceptible <i>Staphylococcus aureus</i> Bloodstream Infections Among 122 Hospitals. Clinical Infectious Diseases, 2015, 61, 361-367.	2.9	170
54	Molecular typing of antibiotic-resistant Staphylococcus aureus in Nigeria. Journal of Infection and Public Health, 2015, 8, 187-193.	1.9	36

#	Article	IF	CITATIONS
55	Molecular characterization of methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization and infection isolates in a Veterans Affairs hospital. Antimicrobial Resistance and Infection Control, 2015, 4, 10.	1.5	14
56	Molecular characteristics of Staphylococcus aureus isolated from employees, children, and environmental surfaces in Iowa child daycare facilities. American Journal of Infection Control, 2015, 43, 482-488.	1.1	14
57	Swine Farming Is a Risk Factor for Infection With and High Prevalence of Carriage of Multidrug-Resistant Staphylococcus aureus. Clinical Infectious Diseases, 2015, 61, 59-66.	2.9	68
58	Ebola as a course: uniting basic sciences, public health and the humanities. Journal of Public Health, 2015, 38, fdv165.	1.0	0
59	<i>Staphylococcus aureus</i> and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. BioMed Research International, 2014, 2014, 1-9.	0.9	586
60	Resistance to Zinc and Cadmium in <i>Staphylococcus aureus</i> of Human and Animal Origin. Infection Control and Hospital Epidemiology, 2014, 35, S32-S39.	1.0	18
61	False Positives and Negatives Obtained with PCR-Based Identification of Staphylococcus aureus Clonal Complex 398. Journal of Clinical Microbiology, 2014, 52, 701-702.	1.8	2
62	Detection of livestock-associated methicillin-resistant Staphylococcus aureus among swine workers in Romania. Journal of Infection and Public Health, 2014, 7, 323-332.	1.9	19
63	Methicillin-resistant Staphylococcus aureus prevention practices in hospitals throughout a rural state. American Journal of Infection Control, 2014, 42, 868-873.	1.1	3
64	Residential Proximity to Large Numbers of Swine in Feeding Operations Is Associated with Increased Risk of Methicillin-Resistant Staphylococcus aureus Colonization at Time of Hospital Admission in Rural Iowa Veterans. Infection Control and Hospital Epidemiology, 2014, 35, 190-192.	1.0	32
65	Phylogenetic Analysis of Staphylococcus aureus CC398 Reveals a Sub-Lineage Epidemiologically Associated with Infections in Horses. PLoS ONE, 2014, 9, e88083.	1.1	37
66	Risk ofStaphylococcus aureuscarriage in childcare employees. Epidemiology and Infection, 2013, 141, 1975-1982.	1.0	2
67	Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) Isolates of Swine Origin Form Robust Biofilms. PLoS ONE, 2013, 8, e73376.	1.1	20
68	Isolation and Characterization of Methicillin-Resistant Staphylococcus aureus from Pork Farms and Visiting Veterinary Students. PLoS ONE, 2013, 8, e53738.	1.1	143
69	Methicillin-Resistant Staphylococcus aureus in Pigs and Farm Workers on Conventional and Antibiotic-Free Swine Farms in the USA. PLoS ONE, 2013, 8, e63704.	1.1	124
70	Antimicrobial resistance and molecular epidemiology of <i>Staphylococcus aureus</i> from Ulaanbaatar, Mongolia. PeerJ, 2013, 1, e176.	0.9	7
71	Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock. MBio, 2012, 3, .	1.8	638
72	High Prevalence of Panton-Valentine Leukocidin Among Methicillin-Sensitive <i>Staphylococcus aureus</i> Colonization Isolates in Rural Iowa. Microbial Drug Resistance, 2012, 18, 427-433.	0.9	17

#	Article	IF	CITATIONS
73	Recent Iowa Trends in Sudden Unexpected Infant Deaths. American Journal of Forensic Medicine and Pathology, 2012, 33, 113-118.	0.4	4
74	Whole-Genome Sequence of Livestock-Associated ST398 Methicillin-Resistant Staphylococcus aureus Isolated from Humans in Canada. Journal of Bacteriology, 2012, 194, 6627-6628.	1.0	35
75	Methicillin-resistant Staphylococcus aureus in Central Iowa Wildlife. Journal of Wildlife Diseases, 2012, 48, 1069-1073.	0.3	35
76	Molecular and epidemiologic predictors of Staphylococcus aureus colonization site in a population with limited nosocomial exposure. American Journal of Infection Control, 2012, 40, 992-996.	1.1	17
77	MRSA in Conventional and Alternative Retail Pork Products. PLoS ONE, 2012, 7, e30092.	1.1	133
78	Methicillin-Susceptible <i>Staphylococcus aureus</i> ST398, New York and New Jersey, USA. Emerging Infectious Diseases, 2012, 18, 700-702.	2.0	55
79	Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. Journal of Infection and Public Health, 2011, 4, 169-174.	1.9	152
80	Plasmid-borne vga(A)-encoding gene in methicillin-resistant Staphylococcus aureus ST398 recovered from swine and a swine farmer in the United States. Diagnostic Microbiology and Infectious Disease, 2011, 71, 177-180.	0.8	18
81	The Emergence of <i>Staphylococcus aureus</i> ST398. Vector-Borne and Zoonotic Diseases, 2011, 11, 327-339.	0.6	172
82	Livestock-associated <i>Staphylococcus aureus</i> in Childcare Worker. Emerging Infectious Diseases, 2011, 17, 742-744.	2.0	6
83	Primary Care Clinicians' Perspectives on Management of Skin and Soft Tissue Infections: An Iowa Research Network Study. Journal of Rural Health, 2011, 27, 319-328.	1.6	1
84	Emerging Swine Zoonoses. Vector-Borne and Zoonotic Diseases, 2011, 11, 1225-1234.	0.6	41
85	Methicillin-Resistant Staphylococcus aureus in Pork Production Shower Facilities. Applied and Environmental Microbiology, 2011, 77, 696-698.	1.4	17
86	Management of Skin and Soft Tissue Infections in Community Practice Before and After Implementing a "Best Practice" Approach: An Iowa Research Network (IRENE) Intervention Study. Journal of the American Board of Family Medicine, 2011, 24, 524-533.	0.8	14
87	Livestock-associated <i>Staphylococcus aureus</i> in Childcare Worker. Emerging Infectious Diseases, 2011, 17, 742-744.	2.0	7
88	A Review of Inside the Outbreaks: The Elite Medical Detectives of the Epidemic Intelligence Service Inside the Outbreaks: The Elite Medical Detectives of the Epidemic Intelligence Serivce; PendergrastMark; (2010). Houghton Mifflin Harcourt. Boston. 432 pages Journal of Microbiology and Biology Education, 2010, 11, 183-183.	0.5	0
89	The Environment as a Factor in Methicillin-Resistant Staphylococcus aureus Transmission. Reviews on Environmental Health, 2010, 25, 121-34.	1.1	26
90	Denialism: How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives. Emerging Infectious Diseases, 2010, 16, 749b-750.	2.0	0

#	Article	IF	CITATIONS
91	Self-reported methicillin-resistant Staphylococcus aureus infection in USA pork producers. Annals of Agricultural and Environmental Medicine, 2010, 17, 331-4.	0.5	9
92	Methicillin-Resistant Staphylococcus aureus (MRSA) Strain ST398 Is Present in Midwestern U.S. Swine and Swine Workers. PLoS ONE, 2009, 4, e4258.	1.1	383
93	Occupational Exposure to <i>Streptococcus suis</i> among US Swine Workers. Emerging Infectious Diseases, 2008, 14, 1925-1927.	2.0	56
94	Advancing Science through Conversations: Bridging the Gap between Blogs and the Academy. PLoS Biology, 2008, 6, e240.	2.6	56
95	HIV Denial in the Internet Era. PLoS Medicine, 2007, 4, e256.	3.9	24
96	Distribution of novel and previously investigated virulence genes in colonizing and invasive isolates of Streptococcus agalactiae. Epidemiology and Infection, 2007, 135, 1046-1054.	1.0	20
97	Regulation of protein H expression in M1 serotype isolates ofStreptococcus pyogenes. FEMS Microbiology Letters, 2003, 219, 9-15.	0.7	10
98	Streptococcus pyogenes Infection in Mouse Skin Leads to a Time-Dependent Up-Regulation of Protein H Expression. Infection and Immunity, 2003, 71, 6079-6082.	1.0	9