
Yukihiro Kimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8974932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectral Properties of Chlorophyll <i>f</i> in the B800 Cavity of Lightâ€harvesting Complex 2 from the Purple Photosynthetic Bacterium <i>Rhodoblastus acidophilus</i> . Photochemistry and Photobiology, 2022, 98, 169-174.	1.3	4
2	Identification of metal-sensitive structural changes in the Ca2+-binding photocomplex from <i>Thermochromatium tepidum</i> by isotope-edited vibrational spectroscopy. Journal of Chemical Physics, 2022, 156, 105101.	1.2	2
3	Asymmetric structure of the native Rhodobacter sphaeroides dimeric LH1–RC complex. Nature Communications, 2022, 13, 1904.	5.8	15
4	A Ca2+-binding motif underlies the unusual properties of certain photosynthetic bacterial core light-harvesting complexes. Journal of Biological Chemistry, 2022, 298, 101967.	1.6	9
5	Salt- and pH-Dependent Thermal Stability of Photocomplexes from Extremophilic Bacteriochlorophyll b-Containing Halorhodospira Species. Microorganisms, 2022, 10, 959.	1.6	2
6	Quinone transport in the closed light-harvesting 1 reaction center complex from the thermophilic purple bacterium Thermochromatium tepidum. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148307.	0.5	5
7	Crystal structure of a photosynthetic LH1-RC in complex with its electron donor HiPIP. Nature Communications, 2021, 12, 1104.	5.8	15
8	Excitation Energy Transfer from Bacteriochlorophyll <i>b</i> in the B800 Site to B850 Bacteriochlorophyll <i>a</i> in Light-Harvesting Complex 2. Journal of Physical Chemistry B, 2021, 125, 2009-2017.	1.2	12
9	Circular dichroism and resonance Raman spectroscopies of bacteriochlorophyll b-containing LH1-RC complexes. Photosynthesis Research, 2021, 148, 77-86.	1.6	7
10	Cryo-EM Structure of the Photosynthetic LH1-RC Complex from <i>Rhodospirillum rubrum</i> . Biochemistry, 2021, 60, 2483-2491.	1.2	21
11	Photosynthetic Growth and Energy Conversion in an Engineered Phototroph Containing <i>Thermochromatium tepidum</i> Light-Harvesting Complex 1 and the <i>Rhodobacter sphaeroides</i> Reaction Center Complex. Biochemistry, 2021, 60, 2685-2690.	1.2	2
12	Electrostatic charge controls the lowest LH1 Qy transition energy in the triply extremophilic purple phototrophic bacterium, Halorhodospira halochloris. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148473.	0.5	10
13	A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex. Nature Communications, 2021, 12, 6300.	5.8	21
14	Cryo-EM structure of a Ca2+-bound photosynthetic LH1-RC complex containing multiple αβ-polypeptides. Nature Communications, 2020, 11, 4955.	5.8	35
15	Lycopene-Family Carotenoids Confer Thermostability on Photocomplexes from a New Thermophilic Purple Bacterium. Biochemistry, 2020, 59, 2351-2358.	1.2	15
16	Reconstitution of 3-Acetyl Chlorophyll <i>a</i> into Light-Harvesting Complex 2 from the Purple Photosynthetic Bacterium <i>Phaeospirillum molischianum</i> . ACS Omega, 2020, 5, 6817-6825.	1.6	12
17	A Dual Role for Ca ²⁺ in Expanding the Spectral Diversity and Stability of Light-Harvesting 1 Reaction Center Photocomplexes of Purple Phototrophic Bacteria. Biochemistry, 2019, 58, 2844-2852.	1.2	23
18	Selective oxidation of B800 bacteriochlorophyll a in photosynthetic light-harvesting protein LH2. Scientific Reports, 2019, 9, 3636.	1.6	10

Yukihiro Kimura

#	Article	IF	CITATIONS
19	C-terminal cleavage of the LH1 α-polypeptide in the Sr2+-cultured Thermochromatium tepidum. Photosynthesis Research, 2018, 135, 23-31.	1.6	3
20	Reconstitution of Chlorophyll <i>d</i> into the Bacterial Photosynthetic Light-harvesting Protein LH2. Chemistry Letters, 2018, 47, 1071-1074.	0.7	13
21	Biochemical and Spectroscopic Characterizations of a Hybrid Light-Harvesting Reaction Center Core Complex. Biochemistry, 2018, 57, 4496-4503.	1.2	6
22	Effects of Calcium Ions on the Thermostability and Spectroscopic Properties of the LH1-RC Complex from a New Thermophilic Purple Bacterium <i>Allochromatium tepidum</i> . Journal of Physical Chemistry B, 2017, 121, 5025-5032.	1.2	23
23	Probing structure–function relationships in early events in photosynthesis using a chimeric photocomplex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10906-10911.	3.3	22
24	Structural Basis for the Unusual Q _y Red-Shift and Enhanced Thermostability of the LH1 Complex from <i>Thermochromatium tepidum</i> . Biochemistry, 2016, 55, 6495-6504.	1.2	34
25	Spectroscopic and Thermodynamic Characterization of the Metal-Binding Sites in the LH1–RC Complex from Thermophilic Photosynthetic Bacterium <i>Thermochromatium tepidum</i> . Journal of Physical Chemistry B, 2016, 120, 12466-12473.	1.2	12
26	The roles of C-terminal residues on the thermal stability and local heme environment of cytochrome c' from the thermophilic purple sulfur bacterium Thermochromatium tepidum. Photosynthesis Research, 2015, 124, 19-29.	1.6	5
27	Examination of molecular mechanism for the enhanced thermal stability of anthocyanins by metal cations and polysaccharides. Food Chemistry, 2014, 143, 452-458.	4.2	55
28	ATR–FTIR Detection of Metal-Sensitive Structural Changes in the Light-Harvesting 1 Reaction Center Complex from the Thermophilic Purple Sulfur Bacterium <i>Thermochromatium tepidum</i> . Biochemistry, 2013, 52, 9001-9008.	1.2	15
29	Structure analysis and characterization of the cytochrome c-554 from thermophilic green sulfur photosynthetic bacterium Chlorobaculum tepidum. Photosynthesis Research, 2013, 118, 249-258.	1.6	4
30	Structure Analysis and Comparative Characterization of the Cytochrome <i>c</i> ′ and Flavocytochrome <i>c</i> from Thermophilic Purple Photosynthetic Bacterium <i>Thermochromatium tepidum</i> . Biochemistry, 2012, 51, 6556-6567.	1.2	18
31	Metal cations modulate the bacteriochlorophyll–protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1022-1029.	0.5	27
32	A Spectroscopic Variant of the Light-Harvesting 1 Core Complex from the Thermophilic Purple Sulfur Bacterium <i>Thermochromatium tepidum</i> . Biochemistry, 2011, 50, 3638-3648.	1.2	13
33	Calcium Ions Are Required for the Enhanced Thermal Stability of the Light-harvesting-Reaction Center Core Complex from Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum. Journal of Biological Chemistry, 2009, 284, 93-99.	1.6	53
34	Overexpression, characterization, and crystallization of the functional domain of cytochrome c z from Chlorobium tepidum. Photosynthesis Research, 2009, 102, 77-84.	1.6	15
35	Specific Ca ²⁺ â€binding motif in the LH1 complex from photosynthetic bacterium <i>Thermochromatiumâ€∫tepidum</i> as revealed by optical spectroscopy and structural modeling. FEBS Journal, 2009, 276, 1739-1749.	2.2	26
36	Excitation Dynamics of Two Spectral Forms of the Core Complexes from Photosynthetic Bacterium Thermochromatium tepidum. Biophysical Journal, 2008, 95, 3349-3357.	0.2	36

Yukihiro Kimura

#	Article	IF	CITATIONS
37	Calcium Ions Are Involved in the Unusual Red Shift of the Light-harvesting 1 Qy Transition of the Core Complex in Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum. Journal of Biological Chemistry, 2008, 283, 13867-13873.	1.6	70
38	Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1057-1063.	0.5	60
39	Studies on photosynthetic oxygen-evolving complex by means of Fourier transform infrared spectroscopy: calcium and chloride cofactors. Photosynthesis Research, 2005, 84, 245-250.	1.6	20
40	Structural Changes of D1 C-terminal α-Carboxylate during S-state Cycling in Photosynthetic Oxygen Evolution. Journal of Biological Chemistry, 2005, 280, 2078-2083.	1.6	62
41	Changes in Structural and Functional Properties of Oxygen-evolving Complex Induced by Replacement of D1-Glutamate 189 with Glutamine in Photosystem II. Journal of Biological Chemistry, 2005, 280, 37895-37900.	1.6	36
42	FTIR Detection of Structural Changes in a Histidine Ligand during S-State Cycling of Photosynthetic Oxygen-Evolving Complexâ€. Biochemistry, 2005, 44, 16072-16078.	1.2	44
43	Water-Sensitive Low-Frequency Vibrations of Reaction Intermediates during S-State Cycling in Photosynthetic Water Oxidationâ€. Biochemistry, 2005, 44, 7613-7622.	1.2	37
44	Functional and structural study on chelator-induced suppression of S2/S1 FTIR spectrum in photosynthetic oxygen-evolving complex. Journal of Inorganic Biochemistry, 2003, 97, 231-239.	1.5	8
45	Changes of Low-Frequency Vibrational Modes Induced by Universal15N- and13C-lsotope Labeling in S2/S1FTIR Difference Spectrum of Oxygen-Evolving Complexâ€. Biochemistry, 2003, 42, 13170-13177.	1.2	71
46	Characteristic Changes of the S2/S1Difference FTIR Spectrum Induced by Ca2+Depletion and Metal Cation Substitution in the Photosynthetic Oxygen-Evolving Complexâ€. Biochemistry, 2002, 41, 5844-5853.	1.2	44
47	Chelator-Induced Disappearance of Carboxylate Stretching Vibrational Modes in S2/S1 FTIR Spectrum in Oxygen-Evolving Complex of Photosystem II. Biochemistry, 2001, 40, 14061-14068.	1.2	45