Yewu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8974876/publications.pdf Version: 2024-02-01

YEWIL WANC

#	Article	IF	CITATIONS
1	Controllable p-type doping of monolayer MoS ₂ with tantalum by one-step chemical vapor deposition. Journal of Materials Chemistry C, 2022, 10, 7662-7673.	2.7	8
2	Highly Sensitive Photodetector Based on the n-Si/p-GaSe Vertical Heterojunction. ACS Applied Nano Materials, 2022, 5, 8012-8019.	2.4	9
3	Self-powered and high responsivity photodetector based on a n-Si/p-GaTe heterojunction. Nanotechnology, 2021, 32, 225204.	1.3	13
4	Preparation of black phosphorus quantum dots and the surface decoration effect on the monolayer MoS2 photodetectors. Chemical Physics Letters, 2021, 772, 138571.	1.2	5
5	Gate induced charge transfer and hysteresis enlargement in MoS ₂ /GeSe ₂ vertical heterostructures. Journal of Materials Chemistry C, 2021, 9, 8213-8219.	2.7	7
6	Design of a two-layer structure to significantly improve the performance of zinc oxide resistive memory. Nanotechnology, 2020, 31, 115209.	1.3	6
7	Resistive memory based on single-crystalline black phosphorus flake/HfOx structure. AIP Advances, 2020, 10, .	0.6	6
8	Stacking the MoS2/GeSe2 vertical van der Waals heterostructure for memory device. Applied Physics Letters, 2020, 117, .	1.5	7
9	Air stable and reversible n-type surface functionalization of MoS ₂ monolayer using Arg and Lys amino acids. Journal of Materials Chemistry C, 2020, 8, 12181-12188.	2.7	6
10	Synthesis and electrical properties of single crystalline black phosphorus nanoribbons. CrystEngComm, 2020, 22, 3824-3830.	1.3	19
11	N-type doping of black phosphorus single crystal by tellurium. Nanotechnology, 2020, 31, 315605.	1.3	8
12	P-type Doping in Large-Area Monolayer MoS ₂ by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2020, 12, 6276-6282.	4.0	129
13	Surface charge transfer doping and effective passivation of black phosphorus field effect transistors. Journal of Materials Chemistry C, 2020, 8, 6595-6604.	2.7	15
14	Design and build MoS2/Au/MoS2 sandwich structure to significantly enhance the photoluminescence. AIP Advances, 2019, 9, 095305.	0.6	0
15	Photoluminescence enhancement by stacking bi-layer MoS2 without interlayer coupling. Journal of Luminescence, 2019, 213, 388-394.	1.5	12
16	HfO ₂ -passivated black phosphorus field effect transistor with long-termed stability and enhanced current on/off ratio. Nanotechnology, 2019, 30, 345208.	1.3	18
17	Ultrafast Li ⁺ Diffusion Kinetics of 2D Oxidized Phosphorus for Quasi-Solid-State Bendable Batteries with Exceptional Energy Densities. Chemistry of Materials, 2019, 31, 4113-4123.	3.2	17
18	Improvement in the quality of black phosphorus by selecting a mineralizer. Nanoscale, 2019, 11, 20081-20089.	2.8	15

Yewu Wang

#	Article	IF	CITATIONS
19	Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chemistry of Materials, 2018, 30, 2742-2749.	3.2	132
20	Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chemical Communications, 2018, 54, 595-598.	2.2	66
21	Resolving the Spatial Structures of Bound Hole States in Black Phosphorus. Nano Letters, 2017, 17, 6935-6940.	4.5	33
22	Influence of metal electrode on the performance of ZnO based resistance switching memories. Journal of Applied Physics, 2017, 122, .	1.1	30
23	Understanding the growth of black phosphorus crystals. CrystEngComm, 2016, 18, 7737-7744.	1.3	60
24	Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots. Nanotechnology, 2016, 27, 505204.	1.3	26
25	Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries. Journal of Power Sources, 2016, 307, 410-415.	4.0	39
26	Growth Mechanism and Enhanced Yield of Black Phosphorus Microribbons. Crystal Growth and Design, 2016, 16, 1096-1103.	1.4	80
27	SiC@Si core–shell nanowires on carbon paper as a hybrid anode forÂlithium-ion batteries. Journal of Power Sources, 2015, 293, 492-497.	4.0	45
28	Silicon carbide nanowires@Ni(OH)2 core–shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability. Journal of Power Sources, 2015, 273, 479-485.	4.0	74
29	Anodic electrodeposition of a porous nickel oxide–hydroxide film on passivated nickel foam for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 7161-7164.	5.2	70
30	Binder-free three-dimensional porous Mn ₃ O ₄ nanorods/reduced graphene oxide paper-like electrodes for electrochemical energy storage. RSC Advances, 2014, 4, 16374.	1.7	53
31	Epitaxial growth of silver nanoislands on the surface of silicon nanowires in ambient air. Acta Materialia, 2014, 79, 241-247.	3.8	4
32	A 3D-SERS substrate with high stability: Silicon nanowire arrays decorated by silver nanoparticles. CrystEngComm, 2013, 15, 6207.	1.3	30
33	Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric. Journal of Power Sources, 2013, 243, 648-653.	4.0	83
34	Composite structure of SiO_2@AgNPs@p-SiNWs for enhanced broadband optical antireflection. Optics Express, 2013, 21, 17484.	1.7	3
35	Formation mechanism of hollow microspheres consisting of ZnO nanosheets. CrystEngComm, 2012, 14, 8615.	1.3	14
36	Facile approach to synthesize SnO2 nanoparticles@carbon nanofibers as anode materials for lithium-ion battery. Journal of Power Sources, 2012, 217, 351-357.	4.0	25

Yewu Wang

#	Article	IF	CITATIONS
37	Aluminum-enhanced sharpening of silicon nanocones. Applied Physics A: Materials Science and Processing, 2010, 99, 705-709.	1.1	5
38	Silicon nanowires grown from copper oxalate. Materials Letters, 2010, 64, 1839-1842.	1.3	3
39	Structure analyses and growth mechanism of ZnO nanoladders. Materials Letters, 2010, 64, 1925-1928.	1.3	3
40	Crystal growth of Si nanowires and formation of longitudinal planar defects. CrystEngComm, 2010, 12, 2793.	1.3	28
41	Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation. Journal of Physical Chemistry C, 2010, 114, 12469-12476.	1.5	33
42	Purposed Built ZnO/Zn5(OH)8Ac2·2H2O Architectures by Hydrothermal Synthesis. Crystal Growth and Design, 2010, 10, 2759-2765.	1.4	20
43	The migration of gold on large diameter silicon nanowires in oxygenous system. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 687-689.	0.8	3
44	Large-scale polyol synthesis of single-crystal bismuth nanowires and the role of NaOH in the synthesis process. Nanotechnology, 2008, 19, 265303.	1.3	30
45	Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotechnology, 2006, 1, 186-189.	15.6	526