
Joëlle Fournier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8974828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Sinorhizobium meliloti</i> succinylated highâ€molecularâ€weight succinoglycan and the <i>Medicago truncatula</i> LysM receptorâ€like kinase MtLYK10 participate independently in symbiotic infection. Plant Journal, 2020, 102, 311-326.	2.8	37
2	A protein complex required for polar growth of rhizobial infection threads. Nature Communications, 2019, 10, 2848.	5.8	72
3	Molecular Methods for Research on Actinorhiza. Rhizosphere Biology, 2019, , 35-59.	0.4	5
4	Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species. PLoS ONE, 2019, 14, e0223149.	1.1	2
5	A simple Agrobacterium tumefaciens-mediated transformation method for rapid transgene expression in Medicago truncatula root hairs. Plant Cell, Tissue and Organ Culture, 2018, 132, 181-190.	1.2	3
6	Cell remodeling and subtilase gene expression in the actinorhizal plant <i>Discaria trinervis</i> highlight host orchestration of intercellular <i>Frankia</i> colonization. New Phytologist, 2018, 219, 1018-1030.	3.5	29
7	The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection. Plant Physiology, 2016, 171, pp.00230.2016.	2.3	48
8	Chitinaseâ€resistant hydrophilic symbiotic factors secreted by <i>Frankia</i> activate both Ca ²⁺ spiking and <i><scp>NIN</scp></i> gene expression in the actinorhizal plant <i>Casuarina glauca</i> . New Phytologist, 2016, 209, 86-93.	3.5	62
9	Remodeling of the Infection Chamber before Infection Thread Formation Reveals a Two-Step Mechanism for Rhizobial Entry into the Host Legume Root Hair. Plant Physiology, 2015, 167, 1233-1242.	2.3	127
10	The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection. Journal of Experimental Botany, 2014, 65, 481-494.	2.4	117
11	Shortâ€chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear <scp>C</scp> a ²⁺ spiking in <i><scp>M</scp>edicago truncatula</i> roots and their production is enhanced by strigolactone. New Phytologist, 2013, 198, 190-202.	3.5	453
12	<i>Medicago truncatula</i> ERN Transcription Factors: Regulatory Interplay with NSP1/NSP2 GRAS Factors and Expression Dynamics throughout Rhizobial Infection Â. Plant Physiology, 2012, 160, 2155-2172.	2.3	127
13	A switch in Ca ²⁺ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of <i>Medicago truncatula</i> . Plant Journal, 2012, 69, 822-830.	2.8	104
14	Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca ²⁺ spiking in the legume and nonlegume root epidermis. New Phytologist, 2011, 189, 347-355.	3.5	165
15	Coordinated transcriptional regulation of the divinyl ether biosynthetic genes in tobacco by signal molecules related to defense. Plant Physiology and Biochemistry, 2010, 48, 225-231.	2.8	22
16	A Nuclear-Targeted Cameleon Demonstrates Intranuclear Ca2+ Spiking in <i>Medicago truncatula</i> Root Hairs in Response to Rhizobial Nodulation Factors Â. Plant Physiology, 2009, 151, 1197-1206.	2.3	152
17	Mechanism of Infection Thread Elongation in Root Hairs of <i>Medicago truncatula</i> and Dynamic Interplay with Associated Rhizobial Colonization Â. Plant Physiology, 2008, 148, 1985-1995.	2.3	179
18	Characterization of a Divinyl Ether Biosynthetic Pathway Specifically Associated with Pathogenesis in Tobacco. Plant Physiology, 2007, 143, 378-388.	2.3	81

Joëlle Fournier

#	Article	IF	CITATIONS
19	Evaluation of the Antimicrobial Activities of Plant Oxylipins Supports Their Involvement in Defense against Pathogens. Plant Physiology, 2005, 139, 1902-1913.	2.3	359
20	Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant, Cell and Environment, 2004, 27, 917-928.	2.8	153
21	Cytological, Genetic, and Molecular Analysis to Characterize Compatible and Incompatible Interactions Between Medicago truncatula and Colletotrichum trifolii. Molecular Plant-Microbe Interactions, 2004, 17, 909-920.	1.4	74
22	Constitutive expression of an inducible lipoxygenase in transgenic tobacco decreases susceptibility to Phytophthora parasitica var. nicotianae. Molecular Breeding, 2003, 12, 271-282.	1.0	27
23	The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytologist, 2001, 149, 43-51.	3.5	179
24	The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6554-6559.	3.3	197
25	Isolation and sequence analysis of Clpgl, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum. Gene, 1996, 170, 125-129.	1.0	42
26	Lipoxygenase Gene Expression in the Tobacco-Phytophthora parasitica nicotianae Interaction. Plant Physiology, 1996, 112, 997-1004.	2.3	88
27	Molecular characterization and expression of Colletotrichum lindemuthianum genes encoding endopolygalacturonase. Progress in Biotechnology, 1996, 14, 369-376.	0.2	0
28	Cloning of an Elicitor-Induced Lipoxygenase cDNA from Tobacco. , 1995, , 286-288.		0
29	Hydroxyproline-containing fragments in the cell wall of Phytophthora parasitica. Phytochemistry, 1994, 35, 591-595.	1.4	9
30	Purification and characterization of elicitorâ€induced lipoxygenase in tobacco cells. Plant Journal, 1993, 3, 63-70.	2.8	55
31	Differential regulation in tobacco cell suspensions of genes involved in plant-bacteria interactions by pathogen-related signals. Plant Molecular Biology, 1991, 17, 409-413.	2.0	21
32	Induction of Proteinase Inhibitors in Tobacco Cell Suspension Culture by Elicitors of Phytophthora parasitica var. nicotianae. Plant Physiology, 1989, 90, 1065-1070.	2.3	55