
Jerzy E Garbarczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8974538/publications.pdf

Version: 2024-02-01

IEDZY E CADRADCZYK

#	Article	IF	CITATIONS
1	Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing. Nanomaterials, 2021, 11, 1321.	4.1	26
2	Facile and reproducible method of stabilizing \$\$hbox {Bi}_2hbox {O}_3\$\$ phases confined in nanocrystallites embedded in amorphous matrix. Scientific Reports, 2021, 11, 19145.	3.3	5
3	Electrochemical Properties of Pristine and Vanadium Doped LiFePO4 Nanocrystallized Glasses. Energies, 2021, 14, 8042.	3.1	5
4	Synthesis, thermal, structural and electrical properties of vanadium-doped lithium-manganese-borate glass and nanocomposites. Ionics, 2020, 26, 1275-1283.	2.4	3
5	Syntheses and nanocrystallization of NaF–M ₂ O ₃ –P ₂ O ₅ NASICONâ€like phosphate glasses (N	1	Qq161 0.784
6	Properties of LiMnBO3 glasses and nanostructured glass-ceramics. Solid State Ionics, 2019, 334, 88-94.	2.7	7
7	Multifold pressure-induced increase of electric conductivity in LiFe0.75V0.10PO4 glass. Scientific Reports, 2019, 9, 16607.	3.3	8
8	Photoluminescence of partially reduced Eu2+/Eu3+ active centers in a NaF–Al2O3–P2O5 glassy matrix with tunable smooth spectra. Journal of Luminescence, 2019, 208, 322-326.	3.1	8
9	Stabilization of the δ-Bi2O3-like structure down to room temperature by thermal nanocrystallization of bismuth oxide-based glasses. Solid State Ionics, 2018, 323, 78-84.	2.7	10
10	Observation of the metal-insulator transition of VO2 in glasses and nanomaterials of MV2O5–P2O5 system (M Li, Na, Mg). Solid State Ionics, 2018, 322, 11-17.	2.7	9
11	Nature of electronic conductivity in olivine-like glasses and nanomaterials of Li2O–FeO–V2O5–P2O5 system. Solid State Ionics, 2017, 302, 45-48.	2.7	9
12	TEM studies on thermally nanocrystallized vanadium-containing glassy analogs of LiFePO4 olivine. Materials Characterization, 2017, 127, 214-221.	4.4	5
13	The charge storage capacity of all-glass heterogeneous materials based on phosphate and vanadate glasses. Solid State Ionics, 2017, 302, 98-101.	2.7	5
14	Novel nanocrystalline mixed conductors based on LiFeBO 3 glass. Solid State Ionics, 2017, 302, 40-44.	2.7	8
15	Synthesis and Characterization of Highly-Conducting Nanocrystallized Li(Fe1–xMnx)0.88V0.08PO4Cathode Materials (x = 0.25, 0.5, 0.75). ECS Transactions, 2017, 80, 325-330.	0.5	2
16	AC/DC conductivity studies of composites of glassy electronic and ionic conductors. Solid State lonics, 2016, 288, 277-280.	2.7	8
17	Dependence of a glass transition temperature on a heating rate in DTA experiments for glasses containing transition metal oxides. Journal of Non-Crystalline Solids, 2016, 443, 155-161.	3.1	10
18	Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 140-147.	3.5	26

JERZY E GARBARCZYK

#	Article	IF	CITATIONS
19	Synthesis of nanostructured Li3Me2(PO4)2F3 glass-ceramics (Me = V, Fe, Ti). Solid State Ionics, 2016, 288, 193-198.	2.7	14
20	High electronic conductivity in nanostructured materials based on lithium-iron-vanadate-phosphate glasses. Solid State Ionics, 2015, 272, 53-59.	2.7	47
21	Properties of 15Ag2Oâ^™70V2O5â^™15P2O5 glass prepared by melt quenching, twin rollers and mechanosynthesis method. Solid State Ionics, 2015, 271, 10-14.	2.7	1
22	Extension of α-Agl stabilization range in Agl–Ag 2 O–M x O y systems by mechanosynthesis processing. Journal of Non-Crystalline Solids, 2015, 408, 66-70.	3.1	3
23	Preparation and Characterization of Li2O-FeO-V2O5-P2O5 Glasses and Related Nanomaterials. Procedia Engineering, 2014, 98, 78-85.	1.2	4
24	Highly Conductive 90V2O5·10P2O5 Nanocrystalline Cathode Materials for Lithium-ion Batteries. Procedia Engineering, 2014, 98, 28-35.	1.2	13
25	Novel vanadium-doped olivine-like nanomaterials with high electronic conductivity. Solid State lonics, 2013, 251, 40-46.	2.7	26
26	Isothermal nanocrystallization of vanadate–phosphate glasses. Solid State Ionics, 2013, 251, 78-82.	2.7	12
27	Mechanosynthesized and ultra-fast quenched Agl–Ag2O–B2O3 materials with high Agl contents. Solid State Ionics, 2013, 251, 55-58.	2.7	8
28	Electrical properties of V2O5 nanomaterials prepared by twin rollers technique. Solid State Ionics, 2012, 225, 658-662.	2.7	17
29	Electrical properties vs. microstructure of nanocrystallized V2O5–P2O5 glasses — An extended temperature range study. Solid State Ionics, 2011, 192, 210-214.	2.7	26
30	Characterisation of silver vanadate glasses prepared by melt quenching, twin rollers and mechanosynthesis methods. Solid State Ionics, 2011, 188, 94-98.	2.7	3
31	Electrical conductivity and phase transformations in the composite ionic conductors AgI : α-Al2O3 prepared via a high-pressure route. Solid State Ionics, 2011, 192, 113-117.	2.7	5
32	Electrical properties of the all-glass composite silver ion conductors. Solid State Ionics, 2011, 188, 90-93.	2.7	8
33	Influence of the process variables on mechanosynthesis of Agl–Ag2O–WO3 system. Solid State Ionics, 2011, 188, 86-89.	2.7	4
34	Electrical properties and thermal stability of FePO4 glasses and nanomaterials. Solid State Ionics, 2011, 188, 99-103.	2.7	12
35	DSC AND ELECTRICAL CONDUCTIVITY STUDIES ON SUPERIONIC ALL-GLASS PHOSPHATE-BASED COMPOSITES. Functional Materials Letters, 2011, 04, 139-142.	1.2	0
36	PREPARATION OF TRIPHYLITE-LIKE GLASSES AND NANOMATERIALS IN THE LIFePO4-V2O5 SYSTEM AND STUDY ON THEIR ELECTRICAL CONDUCTIVITY. Functional Materials Letters, 2011, 04, 143-145.	1.2	10

JERZY E GARBARCZYK

#	Article	IF	CITATIONS
37	Electrical conduction in the vitreous and crystallized Li2O–V2O5–P2O5 system. Solid State Ionics, 2010, 181, 27-32.	2.7	38
38	Novel nanomaterials based on electronic and mixed conductive glasses. Solid State Ionics, 2009, 180, 531-536.	2.7	24
39	Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glasses. Journal of Power Sources, 2009, 194, 73-80.	7.8	61
40	DSC and XRD studies on crystallization kinetics in Agl-rich glassy and glass-crystalline ionic conductors of the Agl–Ag2O–P2O5 system. Solid State Ionics, 2008, 179, 202-205.	2.7	12
41	DTA, FTIR and impedance spectroscopy studies on lithium–iron–phosphate glasses with olivine-like local structure. Solid State Ionics, 2008, 179, 46-50.	2.7	42
42	Electrical properties of silver vanadate amorphous superionic conductors prepared via a mechanosynthesis route. Solid State Ionics, 2008, 179, 206-206.	2.7	0
43	Low-temperature conductivity of composites based on Ag+-ion conducting glasses and α-Al2O3 matrix, prepared via a high-pressure route. Solid State Ionics, 2008, 179, 38-38.	2.7	2
44	Electrical properties and microstructure of glassy-crystalline Ag+-ion conducting composites synthesized by a high-pressure method. Solid State Ionics, 2008, 179, 1278-1281.	2.7	7
45	Micro Raman, FT-IR/PAS, XRD and SEM studies on glassy and partly crystalline silver phosphate ionic conductors. Journal of Power Sources, 2007, 173, 729-733.	7.8	22
46	lonic conductivity of all-glass composites in the Agl–Ag2O–P2O5 system. Journal of Power Sources, 2007, 173, 811-815.	7.8	13
47	Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glasses. Journal of Power Sources, 2007, 173, 743-747.	7.8	34
48	Conductivity, thermal behavior and microstructure of new composites based on Agl–Ag2O–B2O3 glasses with Al2O3 matrix. Journal of Power Sources, 2007, 173, 795-799.	7.8	6
49	Agl-Ag2O-V2O5 glasses as ion-to-electron transducers for the construction of all-solid-state microelectrodes. Mikrochimica Acta, 2007, 159, 311-318.	5.0	2
50	XRD, SEM, Raman and DSC characterization of the materials of the Agl–Ag2O–V2O5 system prepared by mechanosynthesis. Journal of Power Sources, 2007, 173, 806-810.	7.8	2
51	Effect of nanocrystallization on the electronic conductivity of vanadate–phosphate glasses. Solid State Ionics, 2006, 177, 2585-2588.	2.7	33
52	Local Structure and Magnetic Properties of LixFePO4 Glasses. Materials Research Society Symposia Proceedings, 2006, 972, 1.	0.1	1
53	Electrical properties of composites based on silver-conductive glasses infiltrated under high pressure into diamond powder compacts. Solid State Ionics, 2005, 176, 2141-2144.	2.7	5
54	Electrical properties and crystallization processes in Agl–AgO–PO, [AgO]/[PO]=3, glasses. Solid State Ionics, 2005, 176, 1775-1779.	2.7	13

JERZY E GARBARCZYK

#	Article	IF	CITATIONS
55	Effect of nanocrystallization on electrical conductivity of glasses and composites of the Agl–AgO–BO system. Solid State Ionics, 2005, 176, 2137-2140.	2.7	21
56	Enhancement of electrical conductivity in lithium vanadate glasses by nanocrystallization. Solid State Ionics, 2004, 175, 691-694.	2.7	39
57	Impedance spectra of mixed conductive silver vanadate-phosphate glasses. Solid State Ionics, 2003, 157, 281-285.	2.7	8
58	Cyclic voltammetry and impedance spectroscopy studies of silver vanadate phosphate glasses. Solid State Ionics, 2003, 157, 287-291.	2.7	5
59	Electrical properties of Agl–Ag2O–V2O5–P2O5 glasses. Solid State Ionics, 2003, 157, 269-273.	2.7	22
60	EPR studies of mixed-conductive glasses in the Agl–Ag2O–V2O5–P2O5 system. Solid State Ionics, 2001, 140, 141-148.	2.7	30
61	Ionic Conductivity of Glass-Ceramic Composites in the AgI-Ag2O-V2O5 System. Physica Status Solidi A, 2001, 183, 381-389.	1.7	2
62	Composition Dependence of Electric Conductivity in Silver Vanadate Superionic Glasses. Physica Status Solidi A, 2000, 181, 157-167.	1.7	7
63	Transition from ionic to electronic conduction in silver–vanadate–phosphate glasses. Solid State Ionics, 1999, 119, 9-14.	2.7	42
64	Mixed electronic-ionic conduction in glasses of the Agl-Ag2O-V2O5-P2O5 system. Physica Status Solidi A, 1996, 156, 441-449.	1.7	10
65	Electrical properties of thex Na2O · (1–x) (0.6 V2O5 · 0.4 P2O5) glasses for 0.1 ≦x ≦ 0.5. Physica Sta Solidi A, 1994, 142, 201-205.	tus 1.7	2
66	ac conductivity of Na-Ag βâ€⊷alumina polycrystalline samples. Solid State Ionics, 1984, 14, 113-116.	2.7	10
67	Electrical properties of CoO, NiO, CuO and ZnO doped beta″-alumina. Solid State Ionics, 1982, 7, 283-286.	2.7	8