
Paul A Tooney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8974194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	0.7	61
2	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	6.0	44
3	Transcriptomic Profiling of DNA Damage Response in Patient-Derived Glioblastoma Cells before and after Radiation and Temozolomide Treatment. Cells, 2022, 11, 1215.	1.8	5
4	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	13.7	929
5	Large-Scale Evidence for an Association Between Peripheral Inflammation and White Matter Free Water in Schizophrenia and Healthy Individuals. Schizophrenia Bulletin, 2021, 47, 542-551.	2.3	47
6	Low tumour-infiltrating lymphocyte density in primary and recurrent glioblastoma. Oncotarget, 2021, 12, 2177-2187.	0.8	7
7	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	9.4	629
8	DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cellular Oncology (Dordrecht), 2021, 44, 961-981.	2.1	10
9	Transcriptomic abnormalities in peripheral blood in bipolar disorder, and discrimination of the major psychoses. Schizophrenia Research, 2020, 217, 124-135.	1.1	18
10	Wnt receptor gene FZD1 was associated with schizophrenia in genome-wide SNP analysis of the Australian Schizophrenia Research Bank cohort. Australian and New Zealand Journal of Psychiatry, 2020, 54, 902-908.	1.3	9
11	Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. NeuroImage, 2020, 218, 116956.	2.1	135
12	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	6.0	450
13	White matter neuron biology and neuropathology in schizophrenia. NPJ Schizophrenia, 2019, 5, 10.	2.0	24
14	Reduced cortical somatostatin gene expression in a rat model of maternal immune activation. Psychiatry Research, 2019, 282, 112621.	1.7	8
15	Alteration of miRNA-mRNA interactions in lymphocytes of individuals with schizophrenia. Journal of Psychiatric Research, 2019, 112, 89-98.	1.5	15
16	Schizophrenia-associated MicroRNA–Gene Interactions in the Dorsolateral Prefrontal Cortex. Genomics, Proteomics and Bioinformatics, 2019, 17, 623-634.	3.0	23
17	Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process?. Biological Psychiatry, 2019, 85, e35-e39.	0.7	5
18	Increased complement component 4 (C4) gene expression in the cingulate cortex of rats exposed to late gestation immune activation. Schizophrenia Research, 2018, 199, 442-444.	1.1	21

PAUL A TOONEY

#	Article	IF	CITATIONS
19	Late gestation immune activation increases IBA1-positive immunoreactivity levels in the corpus callosum of adult rat offspring. Psychiatry Research, 2018, 266, 175-185.	1.7	11
20	Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biological Psychiatry, 2018, 84, 644-654.	0.7	627
21	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	9.4	838
22	Altered neural signaling and immune pathways in peripheral blood mononuclear cells of schizophrenia patients with cognitive impairment: A transcriptome analysis. Brain, Behavior, and Immunity, 2016, 53, 194-206.	2.0	30
23	Attention: Schizophrenia Risk Gene Product miR-137 Now Targeting EFNB2. EBioMedicine, 2016, 12, 10-11.	2.7	3
24	Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia. Schizophrenia Research, 2016, 176, 114-124.	1.1	74
25	Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women. JAMA Psychiatry, 2016, 73, 497.	6.0	51
26	Increased white matter neuron density in a rat model of maternal immune activation — Implications for schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 65, 118-126.	2.5	28
27	Do common genotypes of FK506 binding protein 5 (FKBP5) moderate the effects of childhood maltreatment on cognition in schizophrenia and healthy controls?. Journal of Psychiatric Research, 2015, 70, 9-17.	1.5	26
28	CX3CR1 is dysregulated in blood and brain from schizophrenia patients. Schizophrenia Research, 2015, 168, 434-443.	1.1	49
29	The effect of a muscarinic receptor 1 gene variant on grey matter volume in schizophrenia. Psychiatry Research - Neuroimaging, 2015, 234, 182-187.	0.9	13
30	Maturation of the Human Dorsolateral Prefrontal Cortex Coincides With a Dynamic Shift in MicroRNA Expression. Schizophrenia Bulletin, 2014, 40, 399-409.	2.3	44
31	Combined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci. Journal of Psychiatric Research, 2014, 52, 44-49.	1.5	37
32	Catechol-O-methyltransferase (COMT) genotype moderates the effects of childhood trauma on cognition and symptoms in schizophrenia. Journal of Psychiatric Research, 2014, 49, 43-50.	1.5	73
33	Antipsychotic drug-associated gene–miRNA interaction in T-lymphocytes. International Journal of Neuropsychopharmacology, 2014, 17, 929-943.	1.0	22
34	Preliminary evidence of an interaction between the FOXP2 gene and childhood emotional abuse predicting likelihood of auditory verbal hallucinations in schizophrenia. Journal of Psychiatric Research, 2014, 50, 66-72.	1.5	33
35	Age effects on cerebral grey matter and their associations with psychopathology, cognition and treatment response in previously untreated schizophrenia patients. Neurology Psychiatry and Brain Research, 2014, 20, 29-36.	2.0	3
36	Gene-microRNA interactions associated with antipsychotic mechanisms and the metabolic side effects of olanzapine. Psychopharmacology, 2013, 227, 67-78.	1.5	39

PAUL A TOONEY

#	Article	IF	CITATIONS
37	Design and interpretation of microRNA–reporter gene activity. Analytical Biochemistry, 2013, 437, 164-171.	1.1	11
38	Context-specific microRNA function in developmental complexity. Journal of Molecular Cell Biology, 2013, 5, 73-84.	1.5	39
39	Gene expression analysis reveals schizophrenia-associated dysregulation ofÂimmune pathways in peripheral blood mononuclear cells. Journal of Psychiatric Research, 2013, 47, 425-437.	1.5	83
40	Gene expression profiling in treatment-naive schizophrenia patients identifies abnormalities in biological pathways involving AKT1 that are corrected by antipsychotic medication. International Journal of Neuropsychopharmacology, 2013, 16, 1483-1503.	1.0	59
41	Finding the needle in the haystack: A review of microarray gene expression research into schizophrenia. Australian and New Zealand Journal of Psychiatry, 2012, 46, 598-610.	1.3	43
42	Alternative mRNA fates identified in microRNA-associated transcriptome analysis. BMC Genomics, 2012, 13, 561.	1.2	22
43	Transcriptome Sequencing Revealed Significant Alteration of Cortical Promoter Usage and Splicing in Schizophrenia. PLoS ONE, 2012, 7, e36351.	1.1	89
44	Upregulation of Dicer and MicroRNA Expression in the Dorsolateral Prefrontal Cortex Brodmann Area 46 in Schizophrenia. Biological Psychiatry, 2011, 69, 180-187.	0.7	236
45	Australian Schizophrenia Research Bank: a database of comprehensive clinical, endophenotypic and genetic data for aetiological studies of schizophrenia. Australian and New Zealand Journal of Psychiatry, 2010, 44, 1029-35.	1.3	90
46	Investigation of the expression of genes affecting cytomatrix active zone function in the amygdala in schizophrenia: Effects of antipsychotic drugs. Journal of Psychiatric Research, 2009, 43, 282-290.	1.5	21
47	Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cellular Signalling, 2009, 21, 1837-1845.	1.7	98
48	Different Forms of Glycine- and GABA _A -Receptor Mediated Inhibitory Synaptic Transmission in Mouse Superficial and Deep Dorsal Horn Neurons. Molecular Pain, 2009, 5, 1744-8069-5-65.	1.0	28
49	Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genomics, 2008, 9, 199.	1.2	65
50	Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 2008, 17, 1156-1168.	1.4	312
51	Altered expression of regulator of G-protein signalling 4 (RGS4) mRNA in the superior temporal gyrus in schizophrenia. Schizophrenia Research, 2007, 89, 165-168.	1.1	47
52	Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophrenia Research, 2006, 82, 175-183.	1.1	106
53	Altered gene expression in the amygdala in schizophrenia: Up-regulation of genes located in the cytomatrix active zone. Molecular and Cellular Neurosciences, 2006, 31, 243-250.	1.0	54
54	Immunohistochemical localisation of the NK1 receptor in the human amygdala: Preliminary investigation in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006, 30, 1313-1321.	2.5	8

PAUL A TOONEY

#	Article	IF	CITATIONS
55	Gene Expression Profiling of Xeroderma Pigmentosum. Hereditary Cancer in Clinical Practice, 2006, 4, 103.	0.6	5
56	The effects of haloperidol treatment on the distribution of NK1 receptor immunoreactive neurons in guinea-pig brain. Neuroscience Letters, 2005, 383, 155-159.	1.0	4
57	Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2004, 28, 273-278.	2.5	63
58	Increased tachykinin NK1 receptor immunoreactivity in the prefrontal cortex in schizophrenia. Biological Psychiatry, 2001, 49, 523-527.	0.7	28
59	Tachykinin NK1 and NK3 Receptors In The Prefrontal Cortex Of The Human Brain. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 947-949.	0.9	26
60	Localisation of tachykinin NK1 and NK3 receptors in the human prefrontal and visual cortex. Neuroscience Letters, 2000, 283, 185-188.	1.0	35
61	Restricted localization of thrombospondin-2 protein during mouse embryogenesis: A comparison to thrombospondin-1. Matrix Biology, 1998, 17, 131-143.	1.5	51
62	A reâ€examination of the molecular basis of cell movement. Immunology and Cell Biology, 1993, 71, 131-139.	1.0	12
63	Natural cytotoxic cells and tumour surveillance in vivo. European Journal of Cancer & Clinical Oncology, 1990, 26, 863-864.	0.9	3