
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8973495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermobarometric modelling of zircon and monazite growth in meltâ€bearing systems: examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 2008, 26, 199-212.	3.4	408
2	On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 2015, 6, 311-356.	8.4	335
3	Boudinage classification: end-member boudin types and modified boudin structures. Journal of Structural Geology, 2004, 26, 739-763.	2.3	230
4	Passage through India: the Mozambique Ocean suture, high-pressure granulites and the Palghat-Cauvery shear zone system. Terra Nova, 2007, 19, 141-147.	2.1	228
5	Tectonic Framework and Evolution of the Gawler Craton, Southern Australia. Economic Geology, 2007, 102, 1377-1395.	3.8	210
6	Crustal architecture of the Himalayan metamorphic front in eastern Nepal. Gondwana Research, 2006, 10, 232-255.	6.0	205
7	Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology, 2010, 38, 99-102.	4.4	199
8	Compressional intracontinental orogens: Ancient and modern perspectives. Earth-Science Reviews, 2014, 130, 128-153.	9.1	153
9	High-Temperature Granite Magmatism, Crust–Mantle Interaction and the Mesoproterozoic Intracontinental Evolution of the Musgrave Province, Central Australia. Journal of Petrology, 2011, 52, 931-958.	2.8	147
10	Controls on the locus of intraplate deformation in central Australia. Earth and Planetary Science Letters, 1998, 162, 97-110.	4.4	144
11	Evidence for Early Mesoproterozoic Arc Magmatism in the Musgrave Block, Central Australia: Implications for Proterozoic Crustal Growth and Tectonic Reconstructions of Australia. Journal of Geology, 2006, 114, 43-63.	1.4	137
12	Intraplate deformation in central Australia, the link between subsidence and fault reactivation. Tectonophysics, 1999, 305, 121-140.	2.2	136
13	Palaeozoic synorogenic sedimentation in central and northern Australia: A review of distribution and timing with implications for the evolution of intracontinental orogens. Australian Journal of Earth Sciences, 2001, 48, 911-928.	1.0	133
14	Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos, 2010, 120, 511-528.	1.4	129
15	Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic. Australian Journal of Earth Sciences, 2008, 55, 623-640.	1.0	124
16	High radiogenic heat–producing granites and metamorphism—An example from the western Mount Isa inlier, Australia. Geology, 1999, 27, 679.	4.4	121
17	Gondwanan basement terranes of the Variscan–Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics, 2016, 681, 278-304.	2.2	117
18	Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen. Journal of Structural Geology, 2003, 25, 1049-1081.	2.3	114

#	Article	IF	CITATIONS
19	Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: Implications for Palaeoproterozoic reconstructions. Precambrian Research, 2006, 148, 275-291.	2.7	114
20	Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent. Geological Society Special Publication, 2009, 323, 319-355.	1.3	113
21	Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth. Lithos, 2016, 248-251, 175-192.	1.4	110
22	Provenance and tectonic development of the late Archaean Gawler Craton, Australia; U–Pb zircon, geochemical and Sm–Nd isotopic implications. Precambrian Research, 2005, 141, 106-136.	2.7	109
23	High geothermal gradient metamorphism during thermal subsidence. Earth and Planetary Science Letters, 1998, 163, 149-165.	4.4	108
24	Particle mobilization in porous media: Temperature effects on competing electrostatic and drag forces. Geophysical Research Letters, 2015, 42, 2852-2860.	4.0	98
25	The Metamorphic Architecture of a Transpressional Orogen: the Kaoko Belt, Namibia. Journal of Petrology, 2003, 44, 679-711.	2.8	94
26	Mathematical modelling of fines migration in geothermal reservoirs. Geothermics, 2016, 59, 123-133.	3.4	92
27	On the application of in situ monazite chemical geochronology to constraining P–T–t histories in high-temperature (>850 °C) polymetamorphic granulites from Prydz Bay, East Antarctica. Journal of the Geological Society, 2007, 164, 667-683.	2.1	91
28	Contrasting P-T Paths in the Eastern Himalaya, Nepal: Inverted Isograds in a Paired Metamorphic Mountain Belt. Journal of Petrology, 2000, 41, 1673-1719.	2.8	90
29	Petrogenesis of the St Peter Suite, southern Australia: Arc magmatism and Proterozoic crustal growth of the South Australian Craton. Precambrian Research, 2008, 166, 283-296.	2.7	87
30	Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geological Magazine, 1995, 132, 151-170.	1.5	86
31	A Proterozoic Wilson cycle identified by Hf isotopes in central Australia: Implications for the assembly of Proterozoic Australia and Rodinia. Geology, 2014, 42, 231-234.	4.4	82
32	The Musgrave Province: Stitching north, west and south Australia. Precambrian Research, 2008, 166, 370-386.	2.7	81
33	Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data. Chemical Geology, 2009, 262, 277-292.	3.3	81
34	Three metamorphic events recorded in a single garnet: Integrated phase modelling, <i>in situ</i> LAâ€ICPMS and SIMS geochronology from the Moine Supergroup, NW Scotland. Journal of Metamorphic Geology, 2010, 28, 249-267.	3.4	81
35	The anatomy of a deep intracontinental orogen. Tectonics, 2010, 29, n/a-n/a.	2.8	81
36	High-pressure granulites at the dawn of the Proterozoic. Geology, 2012, 40, 431-434.	4.4	80

#	Article	IF	CITATIONS
37	U–Pb ages from the Harts Range, central Australia: evidence for early Ordovician extension and constraints on Carboniferous metamorphism. Journal of the Geological Society, 1999, 156, 715-730.	2.1	75
38	Extrusional Tectonics in the Core of a Transpressional Orogen; the Kaoko Belt, Namibia. Journal of Petrology, 2005, 46, 1203-1241.	2.8	74
39	Discovery of a Neoproterozoic basin in the Prydz belt in East Antarctica and its implications for Gondwana assembly and ultrahigh temperature metamorphism. Precambrian Research, 2008, 161, 355-388.	2.7	74
40	The influence of deformation on the formation of axial-planar leucosomes and the segregation of small melt bodies within the migmatitic napperby gneiss, central Australia. Journal of Structural Geology, 1992, 14, 591-604.	2.3	73
41	Testing longâ€ŧerm patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia. Basin Research, 2007, 19, 335-360.	2.7	70
42	Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	70
43	Paleoproterozoic orogenesis in the southeastern Gawler Craton, South Australiaâ^—. Australian Journal of Earth Sciences, 2008, 55, 449-471.	1.0	67
44	Fines migration in geothermal reservoirs: Laboratory and mathematical modelling. Geothermics, 2019, 77, 344-367.	3.4	67
45	Age constraints on terrane-scale shear zones in the Gawler Craton, southern Australia. Precambrian Research, 2005, 139, 164-180.	2.7	66
46	Isotopic and geochemical constraints on the Paleoproterozoic Hutchison Group, southern Australia: Implications for Paleoproterozoic continental reconstructions. Precambrian Research, 2011, 187, 99-126.	2.7	66
47	How well established is isobaric cooling in Proterozoic orogenic belts? An example from the Arunta inlier, central Australia. Geology, 1992, 20, 649.	4.4	64
48	In-situ Lu Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS. Chemical Geology, 2021, 577, 120299.	3.3	62
49	Metapelitic granulites from Jetty Peninsula, east Antarctica: formation during a single event or by polymetamorphism?. Journal of Metamorphic Geology, 1994, 12, 557-573.	3.4	59
50	Nd isotopic and geochemical constraints on provenance of sedimentary rocks in the eastern Officer Basin, Australia: implications for the duration of the intracratonic Petermann Orogeny. Journal of the Geological Society, 2005, 162, 513-530.	2.1	59
51	Longâ€lived highâ€ <i>T</i> , lowâ€ <i>P</i> granulite facies metamorphism in the Arunta Region, central Australia. Journal of Metamorphic Geology, 2014, 32, 25-47.	3.4	58
52	U–Pb, Lu–Hf and Sm–Nd isotopic constraints on provenance and depositional timing of metasedimentary rocks in the western Gawler Craton: Implications for Proterozoic reconstruction models. Precambrian Research, 2011, 184, 43-62.	2.7	56
53	Tectonic cycles in the Strangways Metamorphic Complex, Arunta Inlier, central Australia: geochronological evidence for exhumation and basin formation between two high-grade metamorphic events*. Australian Journal of Earth Sciences, 2005, 52, 205-215.	1.0	55
54	Assessing the geochemical and tectonic impacts of fluid-rock interaction in mid-crustal shear zones: a case study from the intracontinental Alice Springs Orogen, central Australia. Journal of Metamorphic Geology, 2011, 29, 821-850.	3.4	54

#	Article	IF	CITATIONS
55	Evidence for early Mesoproterozoic (ca. 1590Ma) ultrahigh-temperature metamorphism in southern Australia. Lithos, 2011, 124, 1-16.	1.4	54
56	Variation in Metamorphic Style along the Northern Margin of the Damara Orogen, Namibia. Journal of Petrology, 2004, 45, 1261-1295.	2.8	53
57	P–T–t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia. Gondwana Research, 2015, 28, 531-564.	6.0	53
58	Pitfalls of classifying ancient magmatic suites with tectonic discrimination diagrams: An example from the Paleoproterozoic Tunkillia Suite, southern Australia. Precambrian Research, 2010, 177, 227-240.	2.7	52
59	Multi-stage metamorphism in the Rayner–Eastern Chats Terrane: P–T–t constraints from the northern Prince Charles Mountains, east Antarctica. Precambrian Research, 2015, 267, 137-163.	2.7	52
60	The P?T?deformation path for a mid-Proterozoic, low-pressure terrane: the Reynolds Range, central Australia. Journal of Metamorphic Geology, 1991, 9, 641-661.	3.4	51
61	Structural-metamorphic evolution of the tia complex, new england fold belt; thermal overprint of an accretion-subduction complex in a compressional back-arc setting. Journal of Structural Geology, 1992, 14, 669-688.	2.3	48
62	Tectonic feedback, intraplate orogeny and the geochemical structure of the crust: a central Australian perspective. Geological Society Special Publication, 2001, 184, 195-218.	1.3	47
63	Linking the Windmill Islands, east Antarctica and the Albany–Fraser Orogen: Insights from U–Pb zircon geochronology and Hf isotopes. Precambrian Research, 2017, 293, 131-149.	2.7	46
64	Mesoarchean to Mesoproterozoic evolution of the southern Gawler Craton, South Australia. Episodes, 2012, 35, 216-225.	1.2	46
65	Using In Situ Trace-Element Determinations to Monitor Partial-Melting Processes in Metabasites. Journal of Petrology, 2005, 46, 1283-1308.	2.8	45
66	High-grade Paleoproterozoic reworking in the southeastern Gawler Craton, South Australia â^—. Australian Journal of Earth Sciences, 2008, 55, 1063-1081.	1.0	45
67	Evidence for 930 Ma metamorphism in the Shetland Islands, Scottish Caledonides: implications for Neoproterozoic tectonics in the Laurentia–Baltica sector of Rodinia. Journal of the Geological Society, 2009, 166, 1033-1047.	2.1	45
68	Magnetotelluric constraints on subduction polarity: Reversing reconstruction models for Proterozoic Australia. Geology, 2009, 37, 799-802.	4.4	45
69	Thermal weakening localizes intraplate deformation along the southern Australian continental margin. Earth and Planetary Science Letters, 2011, 305, 207-214.	4.4	45
70	Using P–T paths to interpret the tectonothermal setting of prograde metamorphism: An example from the northeastern Gawler Craton, South Australia. Precambrian Research, 2011, 185, 65-85.	2.7	45
71	Conductively driven, highâ€ŧhermal gradient metamorphism in the Anmatjira Range, Arunta region, central Australia. Journal of Metamorphic Geology, 2013, 31, 1003-1026.	3.4	43
72	Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway. Geoscience Frontiers, 2017, 8, 1-14.	8.4	43

#	Article	IF	CITATIONS
73	Detrital zircon provenance constraints on the evolution of the Harts Range Metamorphic Complex (central Australia): links to the Centralian Superbasin. Journal of the Geological Society, 2005, 162, 777-787.	2.1	42
74	Cambrian reworking of the southern Australian Proterozoic Curnamona Province: constraints from regional shear-zone systems. Journal of the Geological Society, 2005, 162, 763-775.	2.1	42
75	Unravelling the tectonothermal evolution of reworked Archean granulite facies metapelites using <i>in situ</i> geochronology: an example from the Gawler Craton, Australia. Journal of Metamorphic Geology, 2010, 28, 293-316.	3.4	41
76	Tectonic setting and provenance of the Paleoproterozoic Willyama Supergroup, Curnamona Province, Australia: Geochemical and Nd isotopic constraints on contrasting source terrain components. Precambrian Research, 2008, 166, 318-337.	2.7	39
77	Highâ€resolution geochemical record of fluid–rock interaction in a midâ€crustal shear zone: a comparative study of major element and oxygen isotope transport in garnet. Journal of Metamorphic Geology, 2012, 30, 255-280.	3.4	39
78	Sm–Nd and Zircon U–Pb ages from garnet-bearing eclogites, NE Oman: constraints on High-P metamorphism. Earth and Planetary Science Letters, 2004, 222, 407-422.	4.4	38
79	Ediacaran intracontinental channel flow. Geology, 2009, 37, 291-294.	4.4	38
80	Cambrian High-temperature Reworking of the Rayner–Eastern Ghats Terrane: Constraints from the Northern Prince Charles Mountains Region, East Antarctica. Journal of Petrology, 2016, 57, 53-92.	2.8	38
81	Evidence for late Paleoproterozoic (ca 1690–1665Ma) high- to ultrahigh-temperature metamorphism in southern Australia: Implications for Proterozoic supercontinent models. Gondwana Research, 2013, 23, 617-640.	6.0	36
82	High grade metamorphism of sedimentary rocks during Palaeozoic rift basin formation in central Australia. Gondwana Research, 2013, 24, 865-885.	6.0	34
83	Clarifying temperatureâ€pressure paths via structures in granulite from the Bolingen Islands, Antarctica. Australian Journal of Earth Sciences, 1995, 42, 157-172.	1.0	33
84	Retention of Sm–Nd isotopic ages in garnets subjected to high-grade thermal reworking: implications for diffusion rates of major and rare earth elements and the Sm–Nd closure temperature in garnet. Contributions To Mineralogy and Petrology, 2010, 159, 93-112.	3.1	33
85	Proterozoic reworking of Archean (Yilgarn) basement in the Bunger Hills, East Antarctica. Precambrian Research, 2017, 298, 16-38.	2.7	33
86	Conservation of deep crustal heat production. Geology, 2018, 46, 335-338.	4.4	33
87	Timing of Proterozoic metamorphism in the southern Curnamona Province: implications for tectonic models and continental reconstructions â^—. Australian Journal of Earth Sciences, 2007, 54, 65-81.	1.0	32
88	U–Pb zircon, zircon Hf and whole-rock Sm–Nd isotopic constraints on the evolution of Paleoproterozoic rocks in the northern Gawler Craton. Australian Journal of Earth Sciences, 2011, 58, 615-638.	1.0	32
89	Grenvillian-aged reworking in the North Australian Craton, central Australia: Constraints from geochronology and modelled phase equilibria. Precambrian Research, 2011, 191, 141-165.	2.7	31
90	Magmatism and metamorphism at ca. 1.45 Ga in the northern Gawler Craton: The Australian record of rifting within Nuna (Columbia). Geoscience Frontiers, 2019, 10, 175-194.	8.4	31

#	Article	IF	CITATIONS
91	Evidence for pre-regional metamorphic fluid infiltration of the Lower Calcsilicate Unit, Reynolds Range Group (central Australia). Journal of Metamorphic Geology, 1994, 12, 789-810.	3.4	30
92	Stable coexistence of grandidierite and kornerupine during medium pressure granulite facies metamorphism. Mineralogical Magazine, 1995, 59, 327-339.	1.4	29
93	Crustal thickening and clay: Controls on O isotope variation in global magmatism and siliciclastic sedimentary rocks. Earth and Planetary Science Letters, 2015, 412, 70-76.	4.4	28
94	Origin of metasedimentary and igneous rocks from the Entia Dome, eastern Arunta region, central Australia: a U–ÂPb LA-ICPMS, SHRIMP and Sm–ÂNd isotope study. Australian Journal of Earth Sciences, 2008, 55, 703-719.	1.0	27
95	A duality of timescales: Short-lived ultrahigh temperature metamorphism preserving a long-lived monazite growth history in the Grenvillian Musgrave–Albany–Fraser Orogen. Precambrian Research, 2015, 264, 204-234.	2.7	27
96	Tectonic evolution of the Reynolds-Anmatjira Ranges: a case study in terrain reworking from the Arunta Inlier, central Australia. Geological Society Special Publication, 2001, 184, 237-260.	1.3	26
97	Australian Proterozoic high-temperature, low-pressure metamorphism in the conductive limit. Geological Society Special Publication, 1998, 138, 109-120.	1.3	24
98	Folded basement-cored tectonic wedges along the northern edge of the Amadeus Basin, Central Australia: evaluation of orogenic shortening. Journal of Structural Geology, 1999, 21, 399-412.	2.3	23
99	A rift-related origin for regional medium-pressure, high-temperature metamorphism. Earth and Planetary Science Letters, 2015, 421, 75-88.	4.4	23
100	Blind orogen: Integrated appraisal of multiple episodes of Mesoproterozoic deformation and reworking in the Fowler Domain, western Gawler Craton, Australia. Precambrian Research, 2008, 166, 263-282.	2.7	22
101	Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton. Lithos, 2016, 262, 44-57.	1.4	22
102	Long-lived metamorphic P–T–t evolution of the Highland Complex, Sri Lanka: Insights from mafic granulites. Precambrian Research, 2018, 316, 227-243.	2.7	22
103	A simple mechanism for mid-crustal shear zones to record surface-derived fluid signatures. Geology, 2013, 41, 711-714.	4.4	21
104	Subduction and accumulation of lawsonite eclogite and garnet blueschist in eastern Australia. Journal of Metamorphic Geology, 2020, 38, 157-182.	3.4	21
105	Decoding Mesoproterozoic and Cambrian metamorphic events in Willyama Complex metapelites through the application of Sm–Nd garnet geochronology and P–T pseudosection analysis. Gondwana Research, 2010, 17, 59-74.	6.0	20
106	A curious case of agreement between conventional thermobarometry and phase equilibria modelling in granulites: New constraints on <i>P–T</i> estimates in the Antarctica segment of the Musgrave–Albany–Fraser–Wilkes Orogen. Journal of Metamorphic Geology, 2017, 35, 1023-1050.	3.4	20
107	A hafnium isotopic record of magmatic arcs and continental growth in the lapetus Ocean: The contrasting evolution of Ganderia and the peri-Laurentian margin. Gondwana Research, 2018, 58, 141-160.	6.0	20
108	First evidence of Renlandian (c. 950–940†Ma) orogeny in mainland Scotland: Implications for the status of the Moine Supergroup and circum-North Atlantic correlations. Precambrian Research, 2018, 305, 283-294.	2.7	20

#	Article	IF	CITATIONS
109	A metamorphic perspective on the Pan African overprint in the Amery area of Mac. Robertson Land, East Antarctica. Antarctic Science, 1997, 9, 313-335.	0.9	19
110	Upgrading iron-ore deposits by melt loss during granulite facies metamorphism. Ore Geology Reviews, 2016, 74, 101-121.	2.7	19
111	Heat Flow in Southern Australia and Connections With East Antarctica. Geochemistry, Geophysics, Geosystems, 2019, 20, 5352-5370.	2.5	19
112	Petrogenesis of <i>ca</i> 1.50ÂGa granitic gneiss of the Coompana Block: filling the â€~magmatic gap' of Mesoproterozoic Australia. Australian Journal of Earth Sciences, 2007, 54, 1089-1102.	1.0	18
113	Delamerian-aged metamorphism in the southern Curnamona Province, Australia: implications for the evolution of the Mesoproterozoic Olarian Orogeny. Terra Nova, 2006, 18, 138-146.	2.1	17
114	Significance of postâ€peak metamorphic reaction microstructures in the ultrahigh temperature Eastern Ghats Province, India. Journal of Metamorphic Geology, 2017, 35, 1081-1109.	3.4	17
115	Electrical evidence of continental accretion: Steeply-dipping crustal-scale conductivity contrast. Geophysical Research Letters, 2006, 33, .	4.0	16
116	Remote sensing of subsurface fractures in the Otway Basin, South Australia. Journal of Geophysical Research: Solid Earth, 2014, 119, 6591-6612.	3.4	15
117	Grenvillian-aged reworking of late Paleoproterozoic crust of the southern North Australian Craton, central Australia: Implications for the assembly of Mesoproterozoic Australia. Precambrian Research, 2015, 270, 100-123.	2.7	15
118	Isotopic systematics of zircon indicate an African affinity for the rocks of southernmost India. Scientific Reports, 2020, 10, 5421.	3.3	15
119	<i>In situ</i> laser ablation Lu–Hf geochronology of garnet across the Western Gneiss Region: campaign-style dating of metamorphism. Journal of the Geological Society, 2022, 179, .	2.1	15
120	In situ Lu–Hf geochronology of calcite. Geochronology, 2022, 4, 353-372.	2.5	13
121	In situ U-Pb geochronology and geochemistry of a 1.13†Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny. Precambrian Research, 2018, 310, 76-92.	2.7	11
122	Pressure–temperature–time (P–T–t) evolution of fore-arc and foreland schist in the Qinling Orogenic Belt, China: Implications for Late Paleozoic and Triassic subduction termination. Gondwana Research, 2018, 61, 20-45.	6.0	11
123	Closed system behaviour of argon in osumilite records protracted highâ€ <i>T</i> metamorphism within the Rogaland–Vest Agder Sector, Norway. Journal of Metamorphic Geology, 2019, 37, 667-680.	3.4	11
124	New constraints on metamorphism in the Highjump Archipelago, East Antarctica. Antarctic Science, 2016, 28, 487-503.	0.9	10
125	Incompatible stress regimes from geological and geomechanical datasets: Can they be reconciled? An example from the Carnarvon Basin, Western Australia. Tectonophysics, 2016, 683, 405-416.	2.2	10
126	Further evidence for two metamorphic events in the Mawson Continent. Antarctic Science, 2018, 30, 44-65.	0.9	10

#	Article	IF	CITATIONS
127	Thermal modelling of very long-lived (>140 Myr) high thermal gradient metamorphism as a result of radiogenic heating in the Reynolds Range, central Australia. Lithos, 2020, 352-353, 105280.	1.4	10
128	Absence of evidence for Palaeoproterozoic eclogite-facies metamorphism in East Antarctica: no record of subduction orogenesis during Nuna development. Scientific Reports, 2021, 11, 6717.	3.3	10
129	Laser-ablation Lu-Hf dating reveals Laurentian garnet in subducted rocks from southern Australia. Geology, 2022, 50, 837-842.	4.4	10
130	First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications. Scientific Reports, 2018, 8, 16403.	3.3	9
131	Thorium distribution in the crust: Outcrop and grain-scale perspectives. Lithos, 2018, 320-321, 222-235.	1.4	9
132	A tripartite approach to unearthing the duration of high temperature conditions versus peak metamorphism: An example from the Bunger Hills, East Antarctica. Precambrian Research, 2018, 314, 194-220.	2.7	9
133	Cambrian eclogite-facies metamorphism in the central Transantarctic Mountains, East Antarctica: Extending the record of early Palaeozoic high-pressure metamorphism along the eastern Gondwanan margin. Lithos, 2020, 366-367, 105571.	1.4	9
134	The Bunger Hills: 60 years of geological and geophysical research. Antarctic Science, 2020, 32, 85-106.	0.9	9
135	Detrital apatite <scp>Lu–Hf</scp> and <scp>U–Pb</scp> geochronology applied to the southwestern Siberian margin. Terra Nova, 2022, 34, 201-209.	2.1	9
136	Numerical modelling of thermal transport and quartz precipitation/dissolution in a coupled fracture–skin–matrix system. International Journal of Heat and Mass Transfer, 2014, 78, 302-310.	4.8	8
137	The Basil Cu–Co deposit, Eastern Arunta Region, Northern Territory, Australia: A metamorphosed volcanic-hosted massive sulphide deposit. Ore Geology Reviews, 2014, 56, 141-158.	2.7	8
138	Thermobarometric constraints on burial and exhumation of 2-billion-year-old eclogites and their metapelitic hosts. Precambrian Research, 2020, 347, 105833.	2.7	8
139	Th–U powered metamorphism: Thermal consequences of a chemical hotspot. Journal of Metamorphic Geology, 2021, 39, 541-565.	3.4	8
140	Extending interpretations of natural fractures from the wellbore using 3D attributes: The Carnarvon Basin, Australia. Interpretation, 2016, 4, SB107-SB129.	1.1	7
141	Melt Reintegration Modelling: Testing against a Subsolidus Reference Assemblage. Geosciences (Switzerland), 2017, 7, 75.	2.2	7
142	A diachronous record of metamorphism in metapelites of the Western Gneiss Region, Norway. Journal of Metamorphic Geology, 2022, 40, 1121-1158.	3.4	7
143	Mapping the Gawler Craton–Musgrave Province interface using integrated heat flow and magnetotellurics. Tectonophysics, 2019, 756, 43-56.	2.2	6
144	Episodic shear zone associated fluid flow in the Curnamona Province, South Australia. Journal of Geochemical Exploration, 2006, 89, 69-72.	3.2	5

#	Article	IF	CITATIONS
145	<i>In situ</i> stress and natural fractures in the Carnarvon Basin, North West Shelf, Australia. Exploration Geophysics, 2019, 50, 514-531.	1.1	5
146	Zircon petrochronology and mineral equilibria of the eclogites from western Tasmania: Interrogating the early Palaeozoic East Gondwana subduction record. Gondwana Research, 2021, 93, 252-274.	6.0	5
147	Prolonged high thermal gradient metamorphism in the Curnamona Province, south-central Australia, during the latter stages of Nuna assembly. Precambrian Research, 2022, 378, 106775.	2.7	4
148	Probing the history of ultraâ€high temperature metamorphism through rare earth element diffusion in zircon. Journal of Metamorphic Geology, 2022, 40, 329-357.	3.4	3
149	Assembling Proterozoic Australia: Inside out or outside in?. Gondwana Research, 2007, 11, 575-576.	6.0	2
150	Pressure–temperature–time constraints on gneiss dome formation in an intracontinental orogen. Journal of Metamorphic Geology, 2022, 40, 457-488.	3.4	2
151	High radiogenic heat–producing granites and metamorphism—An example from the western Mount Isa inlier, Australia: Comment and Reply. Geology, 2000, 28, 672.	4.4	1
152	A metamorphic perspective on foreland flexure during intraplate orogeny: evidence for the involvement of weak lithosphere. Terra Nova, 2015, 27, 329-337.	2.1	1
153	New Laboratory Method to Assess Formation Damage in Geothermal Wells. , 2015, , .		0
154	Further evidence for two metamorphic events in the Mawson Continent – ERRATUM. Antarctic Science, 2018, 30, 149-149.	0.9	0
155	A crustal profile of the heat production of the Harts Range Group, Northern Territory. ASEG Extended Abstracts, 2019, 2019, 1-5.	0.1	0