
Sheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8973059/publications.pdf Version: 2024-02-01

SHENC YANC

#	Article	IF	CITATIONS
1	Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System. Applied and Environmental Microbiology, 2015, 81, 2506-2514.	1.4	908
2	CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 2017, 8, 15179.	5.8	276
3	Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metabolic Engineering, 2009, 11, 284-291.	3.6	221
4	Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 2017, 41, 192-201.	3.6	190
5	CRISPR/Cas9-Based Efficient Genome Editing in <i>Clostridium ljungdahlii</i> , an Autotrophic Gas-Fermenting Bacterium. ACS Synthetic Biology, 2016, 5, 1355-1361.	1.9	171
6	Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Research, 2007, 17, 963-965.	5.7	155
7	Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metabolic Engineering, 2010, 12, 446-454.	3.6	153
8	CRISPRâ€based genome editing and expression control systems in <i>Clostridium acetobutylicum</i> and <i>Clostridium beijerinckii</i> . Biotechnology Journal, 2016, 11, 961-972.	1.8	153
9	Current status and prospects of industrial bio-production of n-butanol in China. Biotechnology Advances, 2015, 33, 1493-1501.	6.0	148
10	Multiplex gene editing of the <i>Yarrowia lipolytica</i> genome using the CRISPR-Cas9 system. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1085-1093.	1.4	146
11	Confirmation and Elimination of Xylose Metabolism Bottlenecks in Glucose Phosphoenolpyruvate-Dependent Phosphotransferase System-Deficient Clostridium acetobutylicum for Simultaneous Utilization of Glucose, Xylose, and Arabinose. Applied and Environmental Microbiology, 2011, 77, 7886-7895.	1.4	129
12	CRISPR-Cas9 ^{D10A} Nickase-Assisted Genome Editing in Lactobacillus casei. Applied and Environmental Microbiology, 2017, 83, .	1.4	128
13	Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nature Communications, 2019, 10, 1378.	5.8	128
14	Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metabolic Engineering, 2016, 37, 79-91.	3.6	118
15	Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metabolic Engineering, 2017, 39, 38-48.	3.6	110
16	Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnology Journal, 2011, 6, 1348-1357.	1.8	108
17	Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metabolic Engineering, 2012, 14, 569-578.	3.6	105
18	Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics, 2010, 11, 255.	1.2	100

#	Article	IF	CITATIONS
19	High-Efficiency Scarless Genetic Modification in Escherichia coli by Using Lambda Red Recombination and I-Scel Cleavage. Applied and Environmental Microbiology, 2014, 80, 3826-3834.	1.4	81
20	afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2009, 81, 1149-1160.	1.7	75
21	Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics, 2011, 12, 93.	1.2	75
22	A stepwise increase in pristinamycin II biosynthesis by Streptomyces pristinaespiralis through combinatorial metabolic engineering. Metabolic Engineering, 2015, 29, 12-25.	3.6	71
23	Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Current Opinion in Biotechnology, 2014, 29, 124-131.	3.3	69
24	Phosphoketolase Pathway for Xylose Catabolism in Clostridium acetobutylicum Revealed by ¹³ C Metabolic Flux Analysis. Journal of Bacteriology, 2012, 194, 5413-5422.	1.0	68
25	Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microbial Cell Factories, 2018, 17, 41.	1.9	68
26	Improved <i>n</i> -Butanol Production from Clostridium cellulovorans by Integrated Metabolic and Evolutionary Engineering. Applied and Environmental Microbiology, 2019, 85, .	1.4	67
27	Development of a RecE/Tâ€Assisted CRISPR–Cas9 Toolbox for <i>Lactobacillus</i> . Biotechnology Journal, 2019, 14, e1800690.	1.8	66
28	Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2007, 77, 625-635.	1.7	64
29	Differential regulation of antibiotic biosynthesis by DraRâ€K, a novel twoâ€component system in <i>Streptomyces coelicolor</i> . Molecular Microbiology, 2012, 85, 535-556.	1.2	64
30	Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiaeby rational design and adaptive evolution. BMC Biotechnology, 2013, 13, 110.	1.7	64
31	One-step integration of multiple genes into the oleaginous yeast Yarrowia lipolytica. Biotechnology Letters, 2014, 36, 2523-2528.	1.1	64
32	Ammonium acetate enhances solvent production by Clostridium acetobutylicum EA 2018 using cassava as a fermentation medium. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1225-1232.	1.4	62
33	Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum. BMC Genomics, 2012, 13, 349.	1.2	60
34	Redox-Responsive Repressor Rex Modulates Alcohol Production and Oxidative Stress Tolerance in Clostridium acetobutylicum. Journal of Bacteriology, 2014, 196, 3949-3963.	1.0	60
35	A CRISPR pf1â€Assisted Nonâ€Homologous End Joining Genome Editing System of <i>Mycobacterium smegmatis</i> . Biotechnology Journal, 2018, 13, e1700588.	1.8	59
36	Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metabolic Engineering, 2015, 28, 169-179.	3.6	58

#	Article	IF	CITATIONS
37	Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metabolic Engineering, 2019, 52, 293-302.	3.6	58
38	CRISPR–Cas9 ^{D10A} nickaseâ€assisted base editing in the solvent producer <i>Clostridium beijerinckii</i> . Biotechnology and Bioengineering, 2019, 116, 1475-1483.	1.7	57
39	A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli. Acta Biochimica Et Biophysica Sinica, 2021, 53, 620-627.	0.9	55
40	Multicopy Chromosomal Integration Using CRISPR-Associated Transposases. ACS Synthetic Biology, 2020, 9, 1998-2008.	1.9	54
41	Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. Journal of Biotechnology, 2009, 143, 284-287.	1.9	53
42	The spike protein of severe acute respiratory syndrome (SARS) is cleaved in virus infected Vero-E6 cells. Cell Research, 2004, 14, 400-406.	5.7	52
43	Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid. Microbial Cell Factories, 2011, 10, 71.	1.9	52
44	Implementation of the CRISPR-Cas13a system in fission yeast and its repurposing for precise RNA editing. Nucleic Acids Research, 2018, 46, e90-e90.	6.5	52
45	Screening and characterization of butanol-tolerant micro-organisms. Letters in Applied Microbiology, 2010, 50, 373-379.	1.0	47
46	<i>mazF</i> as a counter-selectable marker for unmarked genetic modification of <i>Pichia pastoris</i> . FEMS Yeast Research, 2009, 9, 600-609.	1.1	44
47	A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria. MBio, 2017, 8, .	1.8	44
48	A one-pot system for production of l-2-aminobutyric acid from l-threonine by l-threonine deaminase and a NADH-regeneration system based on l-leucine dehydrogenase and formate dehydrogenase. Biotechnology Letters, 2014, 36, 835-841.	1.1	43
49	Preferential Codons Enhancing the Expression Level of Human Beta-Defensin-2 in Recombinant Escherichia Coli. Protein and Peptide Letters, 2004, 11, 339-344.	0.4	43
50	Characterization of a negative regulator Avel for avermectin biosynthesis in Streptomyces avermitilis NRRL8165. Applied Microbiology and Biotechnology, 2008, 80, 277-86.	1.7	39
51	Genotyping of amino acid-producing Corynebacterium glutamicum strains based on multi-locus sequence typing (MLST) scheme. Bioresources and Bioprocessing, 2015, 2, .	2.0	38
52	I-Scel-mediated scarless gene modification via allelic exchange in Clostridium. Journal of Microbiological Methods, 2015, 108, 49-60.	0.7	37
53	Cloning, Overexpression, and Characterization of a Novel Thermostable Penicillin G Acylase from Achromobacter xylosoxidans : Probing the Molecular Basis for Its High Thermostability. Applied and Environmental Microbiology, 2004, 70, 2764-2770.	1.4	36
54	An Orphan Histidine Kinase, OhkA, Regulates Both Secondary Metabolism and Morphological Differentiation in Streptomyces coelicolor. Journal of Bacteriology, 2011, 193, 3020-3032.	1.0	36

Sheng Yang

#	Article	IF	CITATIONS
55	Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics, 2017, 18, 940.	1.2	35
56	Metabolic Engineering of <i>Clostridium cellulovorans</i> to Improve Butanol Production by Consolidated Bioprocessing. ACS Synthetic Biology, 2020, 9, 304-315.	1.9	35
57	New Mutations Involved in Colistin Resistance in Acinetobacter baumannii. MSphere, 2020, 5, .	1.3	34
58	Coupled bioconversion for preparation of N-acetyl-d-neuraminic acid using immobilized N-acetyl-d-glucosamine-2-epimerase and N-acetyl-d-neuraminic acid lyase. Applied Microbiology and Biotechnology, 2010, 85, 1383-1391.	1.7	33
59	Combined overexpression of genes involved in pentose phosphate pathway enables enhanced d-xylose utilization by Clostridium acetobutylicum. Journal of Biotechnology, 2014, 173, 7-9.	1.9	32
60	Production of β-carotene by expressing a heterologous multifunctional carotene synthase in Yarrowia lipolytica. Biotechnology Letters, 2017, 39, 921-927.	1.1	32
61	Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols. Journal of Biotechnology, 2015, 211, 44-45.	1.9	31
62	A novel threeâ€component systemâ€based regulatory model for <scp>d</scp> â€xylose sensing and transport in <scp><i>C</i></scp> <i>lostridium beijerinckii</i> . Molecular Microbiology, 2015, 95, 576-589.	1.2	30
63	Consolidated bioprocessing for butanol production of cellulolytic Clostridia: development and optimization. Microbial Biotechnology, 2020, 13, 410-422.	2.0	30
64	Expression and Purification of Extracellular Penicillin G Acylase in Bacillus subtilis. Protein Expression and Purification, 2001, 21, 60-64.	0.6	28
65	Expression and purification of penicillin G acylase enzymes from four different micro-organisms, and a comparative evaluation of their synthesis/hydrolysis ratios for cephalexin. Protein Expression and Purification, 2006, 46, 107-113.	0.6	28
66	High expression of Trigonopsis variabilis d-amino acid oxidase in Pichia pastoris. Journal of Molecular Catalysis B: Enzymatic, 2002, 18, 291-297.	1.8	27
67	Expression, purification, and immobilization of His-tagged d-amino acid oxidase of Trigonopsis variabilis in Pichia pastoris. Applied Microbiology and Biotechnology, 2006, 70, 683-689.	1.7	27
68	Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial <i>Clostridium</i> community. Biotechnology and Bioengineering, 2020, 117, 2008-2022.	1.7	27
69	Engineering the oleaginous yeast <i>Yarrowia lipolytica</i> for βâ€farnesene overproduction. Biotechnology Journal, 2021, 16, e2100097.	1.8	27
70	Improvement of Solvent Production from Xylose Mother Liquor by Engineering the Xylose Metabolic Pathway in Clostridium acetobutylicum EA 2018. Applied Biochemistry and Biotechnology, 2013, 171, 555-568.	1.4	26
71	Functional Implementation of the Posttranslational SecB-SecA Protein-Targeting Pathway in Bacillus subtilis. Applied and Environmental Microbiology, 2012, 78, 651-659.	1.4	25
72	<i>De Novo</i> Engineering of <i>Corynebacterium glutamicum</i> for <scp>l</scp> -Proline Production. ACS Synthetic Biology, 2020, 9, 1897-1906.	1.9	25

#	Article	IF	CITATIONS
73	Advances and Perspectives for Genome Editing Tools of Corynebacterium glutamicum. Frontiers in Microbiology, 2021, 12, 654058.	1.5	25
74	<scp>PTS</scp> regulation domainâ€containing transcriptional activator Cel <scp>R</scp> and sigma factor Ïf ⁵⁴ control cellobiose utilization in <scp><i>C</i></scp> <i>lostridium acetobutylicum</i> . Molecular Microbiology, 2016, 100, 289-302.	1.2	24
75	Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration. Nucleic Acids Research, 2021, 49, 10192-10202.	6.5	24
76	Rational design of a more stable penicillin G acylase against organic cosolvent. Journal of Molecular Catalysis B: Enzymatic, 2002, 18, 285-290.	1.8	23
77	Production of Alcaligenes faecalis penicillin G acylase in Bacillus subtilis WB600 (pMA5) fed with partially hydrolyzed starch. Enzyme and Microbial Technology, 2006, 39, 555-560.	1.6	23
78	Removal of l-alanine from the production of l-2-aminobutyric acid by introduction of alanine racemase and d-amino acid oxidase. Applied Microbiology and Biotechnology, 2011, 90, 903-910.	1.7	23
79	Vibrio natriegens as a pET-Compatible Expression Host Complementary to Escherichia coli. Frontiers in Microbiology, 2021, 12, 627181.	1.5	23
80	Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Frontiers of Chemical Science and Engineering, 2017, 11, 15-26.	2.3	22
81	CRISPR/Cas9-based efficient genome editing in <italic>Staphylococcus aureus</italic> . Acta Biochimica Et Biophysica Sinica, 2017, 49, 764-770.	0.9	22
82	Downregulation of T7 RNA polymerase transcription enhances pETâ€based recombinant protein protein of version of the production in <i>Escherichia coli</i> BL21 (DE3) by suppressing autolysis. Biotechnology and Bioengineering, 2021, 118, 153-163.	1.7	22
83	Gradually accumulating beneficial mutations to improve the thermostability of N-carbamoyl-d-amino acid amidohydrolase by step-wise evolution. Applied Microbiology and Biotechnology, 2011, 90, 1361-1371.	1.7	21
84	Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 2022, 40, 149-165.	4.9	21
85	Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochemical Journal, 2007, 402, 429-437.	1.7	20
86	Synthetic peptides derived from SARS coronavirus S protein with diagnostic and therapeutic potential. FEBS Letters, 2005, 579, 2130-2136.	1.3	19
87	Increasing synthetic performance of penicillin G acylase from Bacillus megaterium by site-directed mutagenesis. Applied Microbiology and Biotechnology, 2007, 74, 1023-1030.	1.7	19
88	Unraveling the genetic basis of fast l â€arabinose consumption on top of recombinant xyloseâ€fermenting Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2019, 116, 283-293.	1.7	19
89	Comparative analysis of rapamycin biosynthesis clusters between Actinoplanes sp. N902-109 and Streptomyces hygroscopicus ATCC29253. Chinese Journal of Natural Medicines, 2015, 13, 90-98.	0.7	17
90	Development of an inducible transposon system for efficient random mutagenesis in <i>Clostridium acetobutylicum</i> . FEMS Microbiology Letters, 2016, 363, fnw065.	0.7	17

#	Article	IF	CITATIONS
91	Mutagenesis of Key Residues in the Binding Center of <scp>lâ€</scp> Aspartateâ€Î²â€Semialdehyde Dehydrogenase from <i>Escherichia coli</i> Enhances Utilization of the Cofactor NAD(H). ChemBioChem, 2016, 17, 56-64.	1.3	17
92	Roles of three AbrBs in regulating two-phase Clostridium acetobutylicum fermentation. Applied Microbiology and Biotechnology, 2016, 100, 9081-9089.	1.7	17
93	Vibrio natriegens as a host for rapid biotechnology. Trends in Biotechnology, 2022, 40, 381-384.	4.9	17
94	Improving the thermostability of N-carbamyl-d-amino acid amidohydrolase by error-prone PCR. Applied Microbiology and Biotechnology, 2009, 82, 279-285.	1.7	16
95	Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway. Metabolic Engineering, 2016, 35, 121-128.	3.6	16
96	Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae. Bioresources and Bioprocessing, 2021, 8, .	2.0	16
97	Efficient multi-enzyme-catalyzed CDP-choline production driven by an ATP donor module. Applied Microbiology and Biotechnology, 2017, 101, 1409-1417.	1.7	15
98	Engineered Recombinant <i>Escherichia coli</i> Probiotic Strains Integrated with F4 and F18 Fimbriae Cluster Genes in the Chromosome and Their Assessment of Immunogenic Efficacy <i>in Vivo</i> . ACS Synthetic Biology, 2020, 9, 412-426.	1.9	15
99	Improving the Activity and Stability of GL-7-ACA Acylase CA130 by Site-Directed Mutagenesis. Applied and Environmental Microbiology, 2005, 71, 5290-5296.	1.4	14
100	Isolation and molecular characterization of a novel <scp>d</scp> â€hydantoinase from <i>Jannaschia</i> sp. CCS1. FEBS Journal, 2009, 276, 3575-3588.	2.2	14
101	Programming Cells by Multicopy Chromosomal Integration Using CRISPR-Associated Transposases. CRISPR Journal, 2021, 4, 350-359.	1.4	14
102	Application and Evaluation of the Flipped Classroom Based on Micro-Video Class in Pharmacology Teaching. Frontiers in Public Health, 2022, 10, 838900.	1.3	14
103	Enzymatic Production of Glutathione by Bifunctional γ-Glutamylcysteine Synthetase/Glutathione Synthetase Coupled with In Vitro Acetate Kinase-Based ATP Generation. Applied Biochemistry and Biotechnology, 2016, 180, 1446-1455.	1.4	12
104	One-step purification and immobilization of his-tagged GL-7-ACA acylase. Enzyme and Microbial Technology, 2007, 41, 474-479.	1.6	11
105	A recyclable biotransformation system for l-2-aminobutyric acid production based on immobilized enzyme technology. Biotechnology Letters, 2016, 38, 123-129.	1.1	11
106	TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years' Advances. Biotechnology Journal, 2020, 15, 1900284.	1.8	11
107	Construction of an integrative food-grade expression system for Bacillus subtilis. Food Research International, 2005, 38, 251-256.	2.9	10
108	Metabolic Engineering and Adaptive Evolution of <i>Clostridium beijerinckii</i> To Increase Solvent Production from Corn Stover Hydrolysate. Journal of Agricultural and Food Chemistry, 2020, 68, 7916-7925.	2.4	9

#	Article	IF	CITATIONS
109	Construction of recombinant Escherichia coli D11/pMSTO and its use in enzymatic preparation of 7-aminocephalosporanic acid in one pot. Journal of Biotechnology, 2007, 129, 400-405.	1.9	8
110	Characterization of plasmid pXL100 from <i>Amycolatopsis orientalis</i> HCCB10007 and construction of a shuttle vector. Journal of Basic Microbiology, 2015, 55, 247-254.	1.8	8
111	Disruption of stcA blocks sterigmatocystin biosynthesis and improves echinocandin B production in Aspergillus delacroxii. World Journal of Microbiology and Biotechnology, 2019, 35, 109.	1.7	8
112	Detection, Structural Elucidation, and Biological Effects of Diverse <i>N</i> -Acyl-homoserine Lactone Signaling Molecules in the Plant-Promoting Endophytic Bacterium <i>Rhizobium oryzihabitans</i> M15. Journal of Agricultural and Food Chemistry, 2021, 69, 9693-9705.	2.4	8
113	Folding of the SARS Coronavirus Spike Clycoprotein Immunological Fragment (SARS_S1B): Thermodynamic and Kinetic Investigation Correlating with Three-Dimensional Structural Modeling. Biochemistry, 2005, 44, 1453-1463.	1.2	5
114	Optimization of <i>n</i> -butanol synthesis in <i>Lactobacillus brevis</i> via the functional expression of <i>thl</i> , <i>hbd</i> , <i>crt</i> and <i>ter</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 1099-1108.	1.4	5
115	Vitreoscilla hemoglobin enhances the catalytic performance of industrial oxidases in vitro. Applied Microbiology and Biotechnology, 2022, 106, 3657-3667.	1.7	5
116	A novel transposable Mu-like prophage in Bacillus alcalophilus CGMCC 1.3604 (ATCC 27647). Virologica Sinica, 2015, 30, 63-65.	1.2	4
117	The cell line ontology-based representation, integration and analysis of cell lines used in China. BMC Bioinformatics, 2019, 20, 179.	1.2	4
118	Developing Clostridia as Cell Factories for Short- and Medium-Chain Ester Production. Frontiers in Bioengineering and Biotechnology, 2021, 9, 661694.	2.0	4
119	CRISPR-Associated Transposase System Can Insert Multiple Copies of Donor DNA into the Same Target Locus. CRISPR Journal, 2021, , .	1.4	4
120	Tailorâ€made biocatalysts enzymes for the fine chemical industry in China. Biotechnology Journal, 2016, 11, 1121-1123.	1.8	3
121	Disruption of acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases butanol ratio. Journal of Biotechnology, 2008, 136, S36-S37.	1.9	2
122	Complete genome sequence of nucleoside producing strain Corynebacterium stationis ATCC 6872. Journal of Biotechnology, 2016, 225, 57-58.	1.9	2
123	<i>Streptomyces virginiae</i> PPDC Is a New Type of Phenylpyruvate Decarboxylase Composed of Two Subunits. ACS Chemical Biology, 2017, 12, 2008-2014.	1.6	2
124	Recent progress on n-butanol production by lactic acid bacteria. World Journal of Microbiology and Biotechnology, 2021, 37, 205.	1.7	2
125	Biochemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 929-993.	2.3	1
126	A novel global transcriptional perturbation target identified by forward genetics reprograms Vibrio natriegens for improving recombinant protein production. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1124-1133.	0.9	1

#	Article	IF	CITATIONS
127	Genome Editing of Corynebacterium glutamicum Using CRISPR-Cpf1 System. Methods in Molecular Biology, 2022, 2479, 189-206.	0.4	1