John K Mccormick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8972931/publications.pdf Version: 2024-02-01

IOHN K MCCORMICK

#	Article	IF	CITATIONS
1	Potential Uses of Probiotics in Clinical Practice. Clinical Microbiology Reviews, 2003, 16, 658-672.	5.7	703
2	Toxic Shock Syndrome and Bacterial Superantigens: An Update. Annual Review of Microbiology, 2001, 55, 77-104.	2.9	683
3	Genome sequence of a serotype M3 strain of group A Streptococcus: Phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10078-10083.	3.3	452
4	A robust scoring system to evaluate sepsis severity in an animal model. BMC Research Notes, 2014, 7, 233.	0.6	302
5	Identification of a Novel Two-Component Regulatory System That Acts in Global Regulation of Virulence Factors of Staphylococcus aureus. Journal of Bacteriology, 2001, 183, 1113-1123.	1.0	281
6	<i>Lactobacillus reuteri</i> -produced cyclic dipeptides quench <i>agr</i> -mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3360-3365.	3.3	183
7	Crystal Structure of a Superantigen Bound to the High-Affinity, Zinc-Dependent Site on MHC Class II. Immunity, 2001, 14, 93-104.	6.6	134
8	HLA class l–associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. Journal of Clinical Investigation, 2021, 131, .	3.9	130
9	MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLoS Biology, 2017 15, e2001930	2.6	126
10	Characterization and Expression Analysis of Staphylococcus aureus Pathogenicity Island 3. Journal of Biological Chemistry, 2002, 277, 13138-13147.	1.6	123
11	Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nature Medicine, 2009, 15, 641-648.	15.2	121
12	Staphylococcal superantigens in colonization and disease. Frontiers in Cellular and Infection Microbiology, 2012, 2, 52.	1.8	121
13	Structures of Two Streptococcal Superantigens Bound to TCR Î ² Chains Reveal Diversity in the Architecture of T Cell Signaling Complexes. Structure, 2002, 10, 687-699.	1.6	116
14	Repression of the Staphylococcus aureus Accessory Gene Regulator in Serum and In Vivo. Journal of Bacteriology, 2002, 184, 1095-1101.	1.0	108
15	Importance of Vaginal Microbes in Reproductive Health. Reproductive Sciences, 2012, 19, 235-242.	1.1	85
16	Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner. PLoS Pathogens, 2014, 10, e1004155.	2.1	84
17	Bacterial Superantigens Bypass Lck-Dependent T Cell Receptor Signaling by Activating a Gα11-Dependent, PLC-β-Mediated Pathway. Immunity, 2006, 25, 67-78.	6.6	82
18	Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens. Pathogens, 2018, 7, 53.	1.2	80

ЈОНИ К МССОРМІСК

#	Article	IF	CITATIONS
19	Antihomocitrullinated Fibrinogen Antibodies are Specific to Rheumatoid Arthritis and Frequently Bind Citrullinated Proteins/peptides. Journal of Rheumatology, 2014, 41, 270-279.	1.0	69
20	Inhibition of expression of a staphylococcal superantigen-like protein by a soluble factor from Lactobacillus reuteri. Microbiology (United Kingdom), 2006, 152, 1155-1167.	0.7	68
21	Genetic Characterization and Heterologous Expression of Brochocin-C, an Antibotulinal, Two-Peptide Bacteriocin Produced by <i>Brochothrix campestris</i> ATCC 43754. Applied and Environmental Microbiology, 1998, 64, 4757-4766.	1.4	67
22	Development of Streptococcal Pyrogenic Exotoxin C Vaccine Toxoids That Are Protective in the Rabbit Model of Toxic Shock Syndrome. Journal of Immunology, 2000, 165, 2306-2312.	0.4	66
23	Characterization of Two Novel Pyrogenic Toxin Superantigens Made by an Acute Rheumatic Fever Clone of Streptococcus pyogenes Associated with Multiple Disease Outbreaks. Infection and Immunity, 2002, 70, 7095-7104.	1.0	66
24	An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Molecular Microbiology, 2004, 52, 1159-1171.	1.2	64
25	Long-range cooperative binding effects in a T cell receptor variable domain. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9867-9872.	3.3	64
26	Surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS): A new proteomic urinary test for patients with urolithiasis. Journal of Clinical Laboratory Analysis, 2004, 18, 170-175.	0.9	59
27	Nasopharyngeal infection by <i>Streptococcus pyogenes</i> requires superantigen-responsive Vβ-specific T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10226-10231.	3.3	55
28	Structural basis of T-cell specificity and activation by the bacterial superantigen TSST-1. EMBO Journal, 2007, 26, 1187-1197.	3.5	54
29	The SrrAB two-component system regulates <i>Staphylococcus aureus</i> pathogenicity through redox sensitive cysteines. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10989-10999.	3.3	50
30	Superantigens Subvert the Neutrophil Response To Promote Abscess Formation and Enhance Staphylococcus aureus Survival <i>In Vivo</i> . Infection and Immunity, 2014, 82, 3588-3598.	1.0	46
31	Functional Characterization of Streptococcal Pyrogenic Exotoxin J, a Novel Superantigen. Infection and Immunity, 2001, 69, 1381-1388.	1.0	45
32	MAIT Cells Are Major Contributors to the Cytokine Response in Group A Streptococcal Toxic Shock Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25923-25931.	3.3	45
33	Functional Analysis of the TCR Binding Domain of Toxic Shock Syndrome Toxin-1 Predicts Further Diversity in MHC Class II/Superantigen/TCR Ternary Complexes. Journal of Immunology, 2003, 171, 1385-1392.	0.4	44
34	CD1dâ€independent activation of mouse and human <i>i</i> NKT cells by bacterial superantigens. Immunology and Cell Biology, 2012, 90, 699-709.	1.0	44
35	Formation of Vegetations during Infective Endocarditis Excludes Binding of Bacterial‣pecific Host Antibodies toEnterococcus faecalis. Journal of Infectious Diseases, 2002, 185, 994-997.	1.9	43
36	A Novel Loop Domain in Superantigens Extends their T Cell Receptor Recognition Site. Journal of Molecular Biology, 2007, 371, 210-221.	2.0	41

ЈОНИ К МССОРМІСК

#	Article	IF	CITATIONS
37	Survival and recovery of <i>Aeromonas hydrophila</i> in water: development of methodology for testing bottled water in Canada. Canadian Journal of Microbiology, 1994, 40, 145-148.	0.8	36
38	Antibodies to a Surface-Exposed, N-terminal Domain of Aggregation Substance Are Not Protective in the Rabbit Model of Enterococcus faecalis Infective Endocarditis. Infection and Immunity, 2001, 69, 3305-3314.	1.0	35
39	Influence of the Vaginal Microbiota on Toxic Shock Syndrome Toxin 1 Production by Staphylococcus aureus. Applied and Environmental Microbiology, 2013, 79, 1835-1842.	1.4	35
40	Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. Journal of Immunology, 2017, 198, 2805-2818.	0.4	35
41	Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nature Communications, 2020, 11, 5018.	5.8	35
42	Crystal Structure of the Streptococcal Superantigen Spel and Functional Role of a Novel Loop Domain in T Cell Activation by Group V Superantigens. Journal of Molecular Biology, 2007, 367, 925-934.	2.0	34
43	T Cell Signalling Induced by Bacterial Superantigens. , 2007, 93, 161-180.		33
44	<i>Staphylococcus aureus</i> keratinocyte invasion is mediated by integrinâ€linked kinase and Rac1. FASEB Journal, 2015, 29, 711-723.	0.2	33
45	Validation of an Algorithm to Identify Infective Endocarditis in People Who Inject Drugs. Medical Care, 2018, 56, e70-e75.	1.1	31
46	CD1d- and MR1-Restricted T Cells in Sepsis. Frontiers in Immunology, 2015, 6, 401.	2.2	30
47	Pathogenic mechanisms of enterococcal endocarditis. Current Infectious Disease Reports, 2000, 2, 315-321.	1.3	29
48	The SaeRS Two-Component System Is a Direct and Dominant Transcriptional Activator of Toxic Shock Syndrome Toxin 1 in Staphylococcus aureus. Journal of Bacteriology, 2016, 198, 2732-2742.	1.0	27
49	A controlled-release oral opioid supports S. aureus survival in injection drug preparation equipment and may increase bacteremia and endocarditis risk. PLoS ONE, 2019, 14, e0219777.	1.1	26
50	Superantigens Modulate Bacterial Density during Staphylococcus aureus Nasal Colonization. Toxins, 2015, 7, 1821-1836.	1.5	25
51	Toxins and Superantigens of Group A Streptococci. Microbiology Spectrum, 2019, 7, .	1.2	22
52	The Zinc-Dependent Major Histocompatibility Complex Class II Binding Site of Streptococcal Pyrogenic Exotoxin C Is Critical for Maximal Superantigen Function and Toxic Activity. Infection and Immunity, 2003, 71, 1548-1550.	1.0	20
53	Molecular Basis of TCR Selectivity, Cross-Reactivity, and Allelic Discrimination by a Bacterial Superantigen: Integrative Functional and Energetic Mapping of the SpeC-Vβ2.1 Molecular Interface. Journal of Immunology, 2006, 177, 8595-8603.	0.4	20
54	Neutralization of Multiple Staphylococcal Superantigens by a Singleâ€Chain Protein Consisting of Affinityâ€Matured, Variable Domain Repeats. Journal of Infectious Diseases, 2008, 198, 344-348.	1.9	20

ЈОНИ К МССОРМІСК

#	Article	IF	CITATIONS
55	Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. Infection, Genetics and Evolution, 2018, 61, 160-175.	1.0	18
56	Regulation of toxic shock syndrome toxinâ€1 by the accessory gene regulator in <i>Staphylococcus aureus</i> is mediated by the repressor of toxins. Molecular Microbiology, 2019, 112, 1163-1177.	1.2	18
57	Molecular Requirements for MHC Class II α-Chain Engagement and Allelic Discrimination by the Bacterial Superantigen Streptococcal Pyrogenic Exotoxin C. Journal of Immunology, 2008, 181, 3384-3392.	0.4	17
58	The T Cell Receptor β-Chain Second Complementarity Determining Region Loop (CDR2β) Governs T Cell Activation and Vβ Specificity by Bacterial Superantigens. Journal of Biological Chemistry, 2011, 286, 4871-4881.	1.6	17
59	Superantigens promote <i>Staphylococcus aureus</i> bloodstream infection by eliciting pathogenic interferon-gamma production. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
60	T helper type 2-polarized invariant natural killer T cells reduce disease severity in acute intra-abdominal sepsis. Clinical and Experimental Immunology, 2014, 178, 292-309.	1.1	16
61	Staphylococcal Superantigens Use LAMA2 as a Coreceptor To Activate T Cells. Journal of Immunology, 2018, 200, 1471-1479.	0.4	14
62	Bacterial Superantigens Expand and Activate, Rather than Delete or Incapacitate, Preexisting Antigen-Specific Memory CD8+ T Cells. Journal of Infectious Diseases, 2019, 219, 1307-1317.	1.9	14
63	Population Analysis of Staphylococcus aureus Reveals a Cryptic, Highly Prevalent Superantigen SElW That Contributes to the Pathogenesis of Bacteremia. MBio, 2020, 11, .	1.8	14
64	Risk factors for mortality among patients with Staphylococcus aureus bacteremia: a single-centre retrospective cohort study. CMAJ Open, 2014, 2, E352-E359.	1.1	13
65	Invariant NKT cells are pathogenic in the HLA-DR4-transgenic humanized mouse model of toxic shock syndrome and can be targeted to reduce morbidity. Journal of Infectious Diseases, 2017, 215, jiw646.	1.9	13
66	Fournier's gangrene of the penis caused by Streptococcus dysgalactiae subspecies equisimilis: case report and incidence study in a tertiary-care hospital. BMC Infectious Diseases, 2013, 13, 381.	1.3	12
67	Swift Intrahepatic Accumulation of Granulocytic Myeloid-Derived Suppressor Cells in a Humanized Mouse Model of Toxic Shock Syndrome. Journal of Infectious Diseases, 2016, 213, 1990-1995.	1.9	12
68	Streptococcal superantigens and the return of scarlet fever. PLoS Pathogens, 2021, 17, e1010097.	2.1	12
69	Identification of a two-component Class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology. Scientific Reports, 2016, 6, 36233.	1.6	10
70	Control of Established Colon Cancer Xenografts Using a Novel Humanized Single Chain Antibody-Streptococcal Superantigen Fusion Protein Targeting the 5T4 Oncofetal Antigen. PLoS ONE, 2014, 9, e95200.	1.1	10
71	Nasopharyngeal Infection of Mice with Streptococcus pyogenes and In Vivo Detection of Superantigen Activity. Methods in Molecular Biology, 2016, 1396, 95-107.	0.4	9
72	Expression, Purification, and Detection of Novel Streptococcal Superantigens. , 2003, 214, 033-043.		7

Expression, Purification, and Detection of Novel Streptococcal Superantigens. , 2003, 214, 033-043. 72

#	Article	IF	CITATIONS
73	Pyrogenic, Lethal, and Emetic Properties of Superantigens in Rabbits and Primates. , 2003, 214, 245-253.		7
74	Toxins and Superantigens of Group A Streptococci. , 0, , 47-58.		7
75	Discordant rearrangement of primary and anamnestic CD8+ T cell responses to influenza A viral epitopes upon exposure to bacterial superantigens: Implications for prophylactic vaccination, heterosubtypic immunity and superinfections. PLoS Pathogens, 2020, 16, e1008393.	2.1	5
76	Cellulosmicrobium cellulans isolated from a patient with acute renal failure. JMM Case Reports, 2014, 1, .	1.3	3
77	Toxins and Superantigens of Group A Streptococci. , 2019, , 55-66.		1
78	1023. A Controlled-Release Prescription Oral Opioid Can Prolong S. aureus Survival in Injection Drug Preparation Equipment and Potentially Increase Bacteremia Risk. Open Forum Infectious Diseases, 2018, 5, S305-S305.	0.4	0
79	Title is missing!. , 2020, 16, e1008393.		0
80	Title is missing!. , 2020, 16, e1008393.		0
81	Title is missing!. , 2020, 16, e1008393.		0
82	Title is missing!. , 2020, 16, e1008393.		0