List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8972914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems and Environment, 2016, 221, 198-204.	2.5	393
2	Structure, function and management of semiâ€natural habitats for conservation biological control: a review of European studies. Pest Management Science, 2016, 72, 1638-1651.	1.7	222
3	Efficacy and economics of shelter habitats for conservation biological control. Biological Control, 2008, 45, 200-209.	1.4	176
4	Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecology Letters, 2001, 4, 568-576.	3.0	173
5	Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	139
6	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	1.4	115
7	Pollinator-friendly management does not increase the diversity of farmland bees and wasps. Biological Conservation, 2015, 187, 120-126.	1.9	109
8	Targeted agriâ€environment schemes significantly improve the population size of common farmland bumblebee species. Molecular Ecology, 2015, 24, 1668-1680.	2.0	105
9	The impact of soil cultivation on arthropod (Coleoptera and Araneae) emergence on arable land. Pedobiologia, 2003, 47, 181-191.	0.5	95
10	The Value of Uncropped Field Margins For Foraging Bumblebees. Journal of Insect Conservation, 2001, 5, 283-291.	0.8	94
11	Providing foraging resources for solitary bees on farmland: current schemes for pollinators benefit a limited suite of species. Journal of Applied Ecology, 2017, 54, 323-333.	1.9	90
12	Assessing the value of Rural Stewardship schemes for providing foraging resources and nesting habitat for bumblebee queens (Hymenoptera: Apidae). Biological Conservation, 2009, 142, 2023-2032.	1.9	84
13	Predatory activity and spatial pattern: the response of generalist carabids to their aphid prey. Journal of Animal Ecology, 2005, 74, 443-454.	1.3	79
14	A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology, 2020, 57, 681-694.	1.9	77
15	Sustainable Arable Farming For an Improved Environment (SAFFIE): managing winter wheat sward structure for Skylarks Alauda arvensis. Ibis, 2004, 146, 155-162.	1.0	71
16	The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 279, 43-52.	2.5	71
17	Intraguild predation in winter wheat: prey choice by a common epigeal carabid consuming spiders. Journal of Applied Ecology, 2013, 50, 271-279.	1.9	62
18	Identifying key knowledge needs for evidenceâ€based conservation of wild insect pollinators: a collaborative crossâ€sectoral exercise. Insect Conservation and Diversity, 2013, 6, 435-446.	1.4	61

#	Article	IF	CITATIONS
19	Sampling epigeal arthropods: an evaluation of fenced pitfall traps using mark-release-recapture and comparisons to unfenced pitfall traps in arable crops. Entomologia Experimentalis Et Applicata, 1999, 91, 347-357.	0.7	57
20	Using functional traits to quantify the value of plant communities to invertebrate ecosystem service providers in arable landscapes. Journal of Ecology, 2013, 101, 38-46.	1.9	55
21	The role of food retailers in improving resilience in global food supply. Global Food Security, 2015, 7, 1-8.	4.0	54
22	The best wildflowers for wild bees. Journal of Insect Conservation, 2019, 23, 819-830.	0.8	54
23	Quantifying the impact of polyphagous invertebrate predators in controlling cereal aphids and in preventing wheat yield and quality reductions. Annals of Applied Biology, 1997, 131, 375-397.	1.3	53
24	Managing habitats on English farmland for insect pollinator conservation. Biological Conservation, 2015, 182, 215-222.	1.9	51
25	A pan-European model of landscape potential to support natural pest control services. Ecological Indicators, 2018, 90, 653-664.	2.6	44
26	Performance of sampling strategies in the presence of known spatial patterns. Annals of Applied Biology, 2005, 146, 361-370.	1.3	41
27	Botanical diversity of beetle banks. Agriculture, Ecosystems and Environment, 2002, 93, 403-412.	2.5	38
28	What Do We Need to Know to Enhance the Environmental Sustainability of Agricultural Production? A Prioritisation of Knowledge Needs for the UK Food System. Sustainability, 2013, 5, 3095-3115.	1.6	35
29	Effects of the proportion and spatial arrangement of un ropped land on breeding bird abundance in arable rotations. Journal of Applied Ecology, 2012, 49, 883-891.	1.9	30
30	Habitat use by seed-eating birds: a scale-dependent approach. Ibis, 2004, 146, 87-98.	1.0	28
31	The representation and functional composition of carabid and staphylinid beetles in different field boundary types at a farm-scale. Biological Conservation, 2007, 135, 145-152.	1.9	28
32	The Potential of Arable Weeds to Reverse Invertebrate Declines and Associated Ecosystem Services in Cereal Crops. Frontiers in Sustainable Food Systems, 2020, 3, .	1.8	27
33	A comparison of the effect of new and established insecticides on nontarget invertebrates of winter wheat fields. Environmental Toxicology and Chemistry, 2001, 20, 2243-2254.	2.2	24
34	A comparison of techniques for assessing farmland bumblebee populations. Oecologia, 2015, 177, 1093-1102.	0.9	23
35	Enhancing invertebrate food resources for skylarks in cereal ecosystems: how useful are inâ€crop agriâ€environment scheme management options?. Journal of Applied Ecology, 2009, 46, 692-702.	1.9	21
36	Twenty years and counting with SADIE: Spatial Analysis by Distance Indices software and review of its adoption and use. Rethinking Ecology, 0, 4, 1-16.	0.0	21

#	Article	IF	CITATIONS
37	Effects of land use on infestation and parasitism rates of cabbage seed weevil in oilseed rape. Pest Management Science, 2019, 75, 658-666.	1.7	18
38	The contribution of semiâ€natural habitats to biological control is dependent on sentinel prey type. Journal of Applied Ecology, 2020, 57, 914-925.	1.9	17
39	Monoclonal antibodies reveal changes in predator efficiency with prey spatial pattern. Molecular Ecology, 2008, 17, 1828-1839.	2.0	16
40	Regional and Ecotype Traits in <i>Lotus corniculatus </i> L., with Reference to Restoration Ecology. Restoration Ecology, 2009, 17, 12-23.	1.4	16
41	Moderate pollination limitation in some entomophilous crops of Europe. Agriculture, Ecosystems and Environment, 2020, 302, 107002.	2.5	16
42	Assessing the efficacy of artificial domiciles for bumblebees. Journal for Nature Conservation, 2011, 19, 154-160.	0.8	15
43	The spatial distribution of canopy-resident and ground-resident cereal aphids (Sitobion avenae and) Tj ETQq1 1 0	.784314 r 0.5	gBT_/Overloc
44	Approaches to Identify the Value of Seminatural Habitats for Conservation Biological Control. Insects, 2020, 11, 195.	1.0	15
45	Interactive effects of local and landscape factors on farmland carabids. Agricultural and Forest Entomology, 2018, 20, 549-557.	0.7	14
46	Agri-environmental measures and the breeding ecology of a declining farmland bird. Biological Conservation, 2017, 212, 230-239.	1.9	12
47	RESIDUAL TOXICITIES OF THREE INSECTICIDES TO FOUR SPECIES (COLEOPTERA: CARABIDAE) OF ARTHROPOD PREDATOR. Canadian Entomologist, 1996, 128, 1115-1124.	0.4	11
48	A method for rapidly mass laser-marking individually coded ground beetles (Coleoptera: Carabidae) in the field. Ecological Entomology, 2005, 30, 391-396.	1.1	11
49	Can novel seed mixes provide a more diverse, abundant, earlier, and longer-lasting floral resource for bees than current mixes?. Basic and Applied Ecology, 2022, 60, 34-47.	1.2	11
50	Agri-Environment Scheme Habitat Preferences of Yellowhammer <i>Emberiza citrinella</i> on English Farmland. Acta Ornithologica, 2016, 51, 199-209.	0.1	10
51	The value of two agri-environment scheme habitats for pollinators: Annually cultivated margins for arable plants and floristically enhanced grass margins. Agriculture, Ecosystems and Environment, 2022, 326, 107773.	2.5	9
52	Laser marking the carabid Pterostichus melanarius for mark-release-recapture. Ecological Entomology, 2001, 26, 662-663.	1.1	6
53	Cereal Aphid Colony Turnover and Persistence in Winter Wheat. PLoS ONE, 2014, 9, e106822.	1.1	6
54	The diet of Eurasian Tree Sparrow Passer montanus nestlings in relation to agri-environment scheme habitats. Bird Study, 2016, 63, 279-283.	0.4	5

#	Article	IF	CITATIONS
55	Field specific monitoring of cereal yellow dwarf virus aphid vectors and factors influencing their immigration within fields. Pest Management Science, 2021, 77, 4100-4108.	1.7	5
56	Balancing Food Production and Biodiversity Conservation in Arable Landscapes: Lessons from the Farm4Bio Experiment. Outlooks on Pest Management, 2014, 25, 252-256.	0.1	2
57	Relationships between tree sparrow Passer montanus fledging success and the quantity and quality of agricultural habitats – A model comparison study. Ecological Informatics, 2018, 47, 73-76.	2.3	1
58	Can a PCR assay of aphids caught inâ€crop on yellow sticky traps inform field level barley yellow dwarf virus risk assessment?. Annals of Applied Biology, 2020, 177, 178-183.	1.3	1
59	Linking agriâ€environment scheme habitat area, predation and the abundance of chick invertebrate prey to the nesting success of a declining farmland bird. Ecological Solutions and Evidence, 2022, 3, .	0.8	1