List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8972821/publications.pdf Version: 2024-02-01

וסדפעול וחסר

#	Article	IF	CITATIONS
1	Novel Pressure Wave Separation Analysis for Cardiovascular Function Assessment Highlights Major Role of Aortic Root. IEEE Transactions on Biomedical Engineering, 2022, 69, 1707-1716.	4.2	6
2	Wearable Photoplethysmography for Cardiovascular Monitoring. Proceedings of the IEEE, 2022, 110, 355-381.	21.3	48
3	Estimation of central pulse wave velocity from radial pulse wave analysis. Computer Methods and Programs in Biomedicine, 2022, 219, 106781.	4.7	7
4	A coupling strategy for a first 3D-1D model of the cardiovascular system to study the effects of pulse wave propagation on cardiac function. Computational Mechanics, 2022, 70, 703-722.	4.0	4
5	Estimating central blood pressure from aortic flow: development and assessment of algorithms. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H494-H510.	3.2	19
6	An impedance pneumography signal quality index: Design, assessment and application to respiratory rate monitoring. Biomedical Signal Processing and Control, 2021, 65, 102339.	5.7	34
7	Estimating Central Pulse Pressure From Blood Flow by Identifying the Main Physical Determinants of Pulse Pressure Amplification. Frontiers in Physiology, 2021, 12, 608098.	2.8	10
8	Relationship between fiducial points on the peripheral and central blood pressure waveforms: rate of rise of the central waveform is a determinant of peripheral systolic blood pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1601-H1608.	3.2	3
9	Arterial pulse wave propagation across stenoses and aneurysms: assessment of one-dimensional simulations against three-dimensional simulations and <i>in vitro</i> measurements. Journal of the Royal Society Interface, 2021, 18, 20200881.	3.4	16
10	Machine Learning-Based Pulse Wave Analysis for Early Detection of Abdominal Aortic Aneurysms Using In Silico Pulse Waves. Symmetry, 2021, 13, 804.	2.2	14
11	Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms. PLoS ONE, 2021, 16, e0245026.	2.5	24
12	Altered Aortic Hemodynamics and Relative Pressure in Patients with Dilated Cardiomyopathy. Journal of Cardiovascular Translational Research, 2021, , 1.	2.4	4
13	Computational Analysis of Coronary Blood Flow: The Role of Asynchronous Pacing and Arrhythmias. Mathematics, 2020, 8, 1205.	2.2	13
14	Influence of mental stress on the pulse wave features of photoplethysmograms. Healthcare Technology Letters, 2020, 7, 7-12.	3.3	39
15	An in silico simulation of flow-mediated dilation reveals that blood pressure and other factors may influence the response independent of endothelial function. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1337-H1345.	3.2	8
16	YI 1.8 A Computational Model-Based Study on the Effect of Abdominal Aortic Aneurysm on Pulse Wave Morphology. Artery Research, 2020, 26, S10-S11.	0.6	2
17	Acquiring Wearable Photoplethysmography Data in Daily Life: The PPG Diary Pilot Study. Engineering Proceedings, 2020, 2, 80.	0.4	5
18	Acquiring Wearable Photoplethysmography Data in Daily Life: The PPG Diary Pilot Study. , 2020, 2, 80.		9

Acquiring Wearable Photoplethysmography Data in Daily Life: The PPG Diary Pilot Study. , 2020, 2, 80. 18

#	Article	IF	CITATIONS
19	Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1062-H1085.	3.2	127
20	Hemodynamic Mechanism of the Age-Related Increase in Pulse Pressure in Women. Hypertension, 2019, 73, 1018-1024.	2.7	19
21	Alzheimer's Disease: A Step Towards Prognosis Using Smart Wearables. Proceedings (mdpi), 2019, 4, 8.	0.2	3
22	Assessing mental stress from the photoplethysmogram: a numerical study. Physiological Measurement, 2018, 39, 054001.	2.1	71
23	Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review. IEEE Reviews in Biomedical Engineering, 2018, 11, 2-20.	18.0	224
24	Determinant Factors for Arterial Hemodynamics in Hypertension: Theoretical Insights From a Computational Model-Based Study. Journal of Biomechanical Engineering, 2018, 140, .	1.3	18
25	Optimization of topological complexity for one-dimensional arterial blood flow models. Journal of the Royal Society Interface, 2018, 15, 20180546.	3.4	26
26	P32 DETERMINING CARDIAC AND ARTERIAL CONTRIBUTIONS TO CENTRAL PULSE PRESSURE. Artery Research, 2018, 24, 88.	0.6	0
27	P164 INDICES TO ASSESS AORTIC STIFFNESS FROM THE FINGER PHOTOPLETHYSMOGRAM: IN SILICO AND IN VIVO TESTING. Artery Research, 2018, 24, 128.	0.6	2
28	Comment on â€~Numerical assessment and comparison of pulse wave velocity methods aiming at measuring aortic stiffness'. Physiological Measurement, 2018, 39, 078001.	2.1	2
29	Using Smart Wearables to Monitor Cardiac Ejection. Proceedings (mdpi), 2018, 4, .	0.2	2
30	Measuring Vascular Recovery Rate After Exercise. Proceedings (mdpi), 2018, 4, .	0.2	3
31	Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H558-H567.	3.2	21
32	Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants. Physiological Measurement, 2017, 38, 669-690.	2.1	92
33	Forward and Backward Pressure Waveform Morphology in Hypertension. Hypertension, 2017, 69, 375-381.	2.7	43
34	Identifying Hemodynamic Determinants of Pulse Pressure. Hypertension, 2017, 70, 1176-1182.	2.7	40
35	Robust and practical non-invasive estimation of local arterial wave speed and mean blood velocity waveforms. Physiological Measurement, 2017, 38, 2081-2099.	2.1	14
36	8.3 QUANTIFYING HEART AND ARTERIAL CONTRIBUTIONS TO CENTRAL BLOOD PRESSURE IN SYSTOLE. Artery Research, 2016, 16, 65.	0.6	0

#	Article	IF	CITATIONS
37	A Novel Analytical Approach to Pulsatile Blood Flow in the Arterial Network. Annals of Biomedical Engineering, 2016, 44, 3047-3068.	2.5	29
38	An Integrated Software Application for Non-invasive Assessment of Local Aortic Haemodynamic Parameters. Procedia Computer Science, 2016, 90, 2-8.	2.0	2
39	On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. Journal of the Royal Society Interface, 2016, 13, 20160073.	3.4	92
40	Computational assessment of hemodynamics-based diagnostic tools using a database of virtual subjects: Application to three case studies. Journal of Biomechanics, 2016, 49, 3908-3914.	2.1	21
41	Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 32.	3.3	14
42	A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H663-H675.	3.2	85
43	A benchmark study of numerical schemes for oneâ€dimensional arterial blood flow modelling. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02732.	2.1	144
44	Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H222-H234.	3.2	48
45	Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H969-H976.	3.2	27
46	Recruitment Pattern in a Complete Cerebral Arterial Circle. Journal of Biomechanical Engineering, 2015, 137, 111004.	1.3	3
47	Arterial Pressure and Flow Wave Analysis Using Time-Domain 1-D Hemodynamics. Annals of Biomedical Engineering, 2015, 43, 190-206.	2.5	53
48	A new method for quantification of aortic stiffness in vivo using magnetic resonance elastography (MRE): a translational study from sequence design to implementation in patients. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	3.3	3
49	Numerical assessment of the stiffness index. , 2014, 2014, 1969-72.		6
50	Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 249-279.	2.1	38
51	Optimising the Windkessel model for cardiac output monitoring during changes in vascular tone. , 2014, 2014, 3759-62.		3
52	Coronary and Microvascular Physiology During Intra-Aortic BalloonÂCounterpulsation. JACC: Cardiovascular Interventions, 2014, 7, 631-640.	2.9	58
53	A systematic comparison between 1â€D and 3â€D hemodynamics in compliant arterial models. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 204-231.	2.1	225
54	Dominance of the Forward Compression Wave in Determining Pulsatile Components of Blood Pressure. Hypertension, 2014, 64, 1116-1123.	2.7	40

#	Article	IF	CITATIONS
55	Validation of Algorithms for the Estimation of Pulse Transit Time: Where do We Stand Today? Response to Commentaries by Papaioannou et al Annals of Biomedical Engineering, 2014, 42, 1145-1147.	2.5	1
56	A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms. Annals of Biomedical Engineering, 2013, 41, 2617-2629.	2.5	89
57	Attenuation of Wave Reflection by Wave Entrapment Creates a "Horizon Effect―in the Human Aorta. Hypertension, 2012, 60, 778-785.	2.7	79
58	Physical determining factors of the arterial pulse waveform: theoretical analysis and calculation using the 1-D formulation. Journal of Engineering Mathematics, 2012, 77, 19-37.	1.2	58
59	Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels. Physics of Fluids, 2012, 24, .	4.0	36
60	Arterial reservoir-excess pressure and ventricular work. Medical and Biological Engineering and Computing, 2012, 50, 419-424.	2.8	52
61	Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements. Journal of Biomechanics, 2011, 44, 2250-2258.	2.1	277
62	Theoretical models for coronary vascular biomechanics: Progress & challenges. Progress in Biophysics and Molecular Biology, 2011, 104, 49-76.	2.9	62
63	Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed. Journal of Biomechanics, 2011, 44, 885-891.	2.1	55
64	On the Mechanics Underlying the Reservoir-Excess Separation in Systemic Arteries and their Implications for Pulse Wave Analysis. Cardiovascular Engineering (Dordrecht, Netherlands), 2010, 10, 176-189.	1.0	32
65	Reply to 'Cord clamp insult may predispose to SIDS'. Early Human Development, 2010, 86, 67.	1.8	3
66	One-dimensional computational model of pulse wave propagation in the human bronchial tree. , 2010, 2010, 2473-6.		2
67	One-dimensional modelling of pulse wave propagation in human airway bifurcations in space–time variables. , 2009, 2009, 5482-5.		4
68	Placental transfusion insult in the predisposition for SIDS: A mathematical study. Early Human Development, 2009, 85, 455-459.	1.8	7
69	Analysing the pattern of pulse waves in arterial networks: a time-domain study. Journal of Engineering Mathematics, 2009, 64, 331-351.	1.2	88
70	Modelling pulse wave propagation in the rabbit systemic circulation to assess the effects of altered nitric oxide synthesis. Journal of Biomechanics, 2009, 42, 2116-2123.	2.1	23
71	Reduced modelling of blood flow in the cerebral circulation: Coupling 1â€Ð, 0â€Ð and cerebral autoâ€regulation models. International Journal for Numerical Methods in Fluids, 2008, 56, 1061-1067.	1.6	95
72	Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222, 403-416.	1.8	55

#	Article	IF	CITATIONS
73	The Relationship between Velocity and Cerebral Resistance during Vasomotor Reactivity Testing: Should We Report a Different Measurement?. Journal for Vascular Ultrasound, 2008, 32, 67-74.	0.1	0
74	Importance of the aortic reservoir in determining the shape of the arterial pressure waveform – The forgotten lessons of Frank. Artery Research, 2007, 1, 40.	0.6	62
75	Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. Journal of Biomechanics, 2007, 40, 1794-1805.	2.1	356
76	Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. Journal of Biomechanics, 2007, 40, 3476-3486.	2.1	223
77	Can the modified Allen's test always detect sufficient collateral flow in the hand? A computational study. Computer Methods in Biomechanics and Biomedical Engineering, 2006, 9, 353-361.	1.6	23