Pedro Herrera-Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8972776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyurethane electrospun membranes with <scp>hydroxyapatiteâ€vancomycin</scp> for potential application in bone tissue engineering and drug delivery. Journal of Applied Polymer Science, 2022, 139, 51893.	1.3	3
2	Production of Biocomposites Using Different Pre-treated Cut Jute Fibre and Polylactic Acid Matrix and Their Properties. Journal of Natural Fibers, 2021, 18, 1604-1617.	1.7	10
3	Properties of Fiber-Matrix Interfaces of Natural Fiber Composites. , 2021, , 94-116.		1
4	Effect of linear viscoelasticity on stress transfer in a numerical model of a single fiber fragmentation test. Materials Today Communications, 2020, 22, 100757.	0.9	1
5	Enhancement of the in-plane and pin-load bearing behavior of a quasi-isotropic carbon fiber/epoxy matrix multi-scale laminate by modifying the fiber-matrix interphase using graphene nanoplatelets. Journal of Materials Research and Technology, 2020, 9, 13855-13869.	2.6	4
6	Factorial design approach to assess the effect of fiber–matrix adhesion on the IFSS and work of adhesion of carbon fiber/polysulfone-modified epoxy composites. Carbon Letters, 2019, 29, 345-358.	3.3	12
7	Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands. Industrial Crops and Products, 2019, 132, 319-326.	2.5	40
8	Surface modification and performance of jute fibers as reinforcement on polymer matrix: an overview. Journal of Natural Fibers, 2019, 16, 944-960.	1.7	44
9	Adhesion, strengthening and durability issues in the retrofitting of Reinforced Concrete (RC) beams using Carbon Fiber Reinforced Polymer (CFRP) – A Review. Revista ALCONPAT, 2019, 9, 130-151.	0.2	3
10	In situ reinforcement of particulate SiC porous samples with β-Si ₃ N ₄ -nanofibers synthesized by the CVI method without catalytic precursors. Particulate Science and Technology, 2018, 36, 263-269.	1.1	0
11	Selective adsorption of gold and silver in bromine solutions by acetate cellulose composite membranes coated with polyaniline or polypyrrole. Polymer Bulletin, 2018, 75, 3241-3265.	1.7	13
12	Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride. Materials, 2017, 10, 105.	1.3	17
13	Using Factorial Design Methodology to Assess PLA-g-Ma and Henequen Microfibrillated Cellulose Content on the Mechanical Properties of Poly(lactic acid) Composites. International Journal of Polymer Science, 2017, 2017, 1-14.	1.2	11
14	Effect of fiber surface treatment on the incorporation of carbon nanotubes and on the micromechanical properties of a single-carbon fiber-epoxy matrix composite. EXPRESS Polymer Letters, 2017, 11, 704-718.	1.1	19
15	DEGRADACIÓN ACELERADA DE PELÃCULAS DE POLIETILENO CON QUITOSANO COMPATIBILIZADAS CON ANHÃDRIDO MALÉICO. Revista Internacional De Contaminacion Ambiental, 2017, 33, 99-107.	0.1	3
16	Preparation and Characterization of Coaxial Electrospun Fibers Containing Triclosan for Comparative Study of Release Properties with Amoxicillin and Epicatechin. Current Drug Delivery, 2016, 13, 49-56.	0.8	3
17	Creep behaviour of injection-moulded basalt fibre reinforced poly(lactic acid) composites. Journal of Reinforced Plastics and Composites, 2016, 35, 1600-1610.	1.6	20
18	Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix. Carbon Letters, 2016, 19, 47-56.	3.3	10

#	Article	IF	CITATIONS
19	Preparation and Characterization of Films Extruded of Polyethylene/Chitosan Modified with Poly(lactic acid). Materials, 2015, 8, 137-148.	1.3	22
20	Preparation by coaxial electrospinning and characterization of membranes releasing (â^') epicatechin as scaffold for tissue engineering. Materials Science and Engineering C, 2015, 46, 184-189.	3.8	22
21	A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites. EXPRESS Polymer Letters, 2015, 9, 1119-1132.	1.1	13
22	Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments. EXPRESS Polymer Letters, 2014, 8, 491-504.	1.1	18
23	Degradability of extruded polyethylene/chitosan blends compatibilized with polyethyleneâ€ <i>graft</i> â€maleic anhydride under natural weathering. Journal of Applied Polymer Science, 2014, 131, .	1.3	14
24	Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydrate Polymers, 2014, 101, 1094-1100.	5.1	56
25	Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polymer Testing, 2013, 32, 1114-1122.	2.3	103
26	Preparation of polyaniline submicro/nanostructures using l-glutamic acid: Loading and releasing studies of amoxicillin. Synthetic Metals, 2013, 184, 41-47.	2.1	11
27	Effect of moisture absorption on the mechanical behavior of carbon fiber/epoxy matrix composites. Journal of Materials Science, 2013, 48, 1873-1882.	1.7	106
28	The effect of interfacial adhesion on the creep behaviour of LDPE–Al–Fique composite materials. Composites Part B: Engineering, 2013, 55, 345-351.	5.9	41
29	Influence of Aging Time on the Structural Changes of Cassava Thermoplastic Starch. Materials Research Society Symposia Proceedings, 2012, 1372, 21.	0.1	6
30	Amoxicillin embedded in cellulose acetate-poly (vinyl pyrrolidone) fibers prepared by coaxial electrospinning: Preparation and characterization. Materials Letters, 2012, 76, 250-254.	1.3	34
31	Photoelastic evaluation of fiber surface-treatments on the interfacial performance of a polyester fiber/epoxy model composite. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1017-1024.	3.8	10
32	Preparation, characterization and release of amoxicillin from cellulose acetate and poly(vinyl) Tj ETQq0 0 0 rgBT / 1772-1778.	Overlock I 3.8	10 Tf 50 227 65
33	Effect of the interphase microstructure on the behavior of carbon fiber/epoxy resin model composite in a thermal environment. Journal of Materials Science, 2011, 46, 4026-4033.	1.7	21
34	Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites. Journal of Materials Science, 2011, 46, 6664-6672.	1.7	34
35	Adsorption and desorption of a gold–iodide complex onto cellulose acetate membrane coated with polyaniline or polypyrrole: a comparative study. Journal of Materials Science, 2011, 46, 7466-7474.	1.7	20
36	Compatibilization of polyethylene/polyaniline blends with polyethyleneâ€ <i>graft</i> â€maleic anhydride. Journal of Applied Polymer Science, 2011, 119, 2895-2901.	1.3	23

#	Article	IF	CITATIONS
37	Biocomposites from Musa textilis and polypropylene: Evaluation of flexural properties and impact strength. Composites Science and Technology, 2011, 71, 122-128.	3.8	70
38	Fibrous membranes of cellulose acetate and poly(vinyl pyrrolidone) by electrospinning method: Preparation and characterization. Journal of Applied Polymer Science, 2010, 116, 1873-1878.	1.3	11
39	A study of the fracture toughness of acrylic composites using the essential work of fracture method. Polymer Testing, 2010, 29, 565-571.	2.3	7
40	Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties. Bioresource Technology, 2010, 101, 387-395.	4.8	124
41	Electrical, mechanical and piezo-resistive behavior of a polyaniline/poly(n-butyl methacrylate) composite. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1573-1579.	3.8	37
42	Modification of the fibre surface for the optimisation of mechanical properties in natural-fibre reinforced polymers. International Journal of Materials and Product Technology, 2009, 36, 417.	0.1	4
43	Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes. Composites Science and Technology, 2008, 68, 1422-1431.	3.8	138
44	Stem anatomical characteristics of the climbing palm Desmoncus orthacanthos (Arecaceae) under two natural growth conditions in a tropical forest. Revista De Biologia Tropical, 2008, 56, 937-49.	0.1	3
45	Analysis of the interface between a thermoplastic fiber and a thermosetting matrix using photoelasticity. Composites Part A: Applied Science and Manufacturing, 2007, 38, 819-827.	3.8	13
46	Urea sensing film prepared by extrusion from DBSA-doped polyaniline-poly(styrene-co-potassium) Tj ETQq0 0 0 r	gBT /Overl 4.0	ock 10 Tf 50 12
47	Dynamic Mechanical Properties of Compatibilized PET with Radiation Oxidized HDPE. Polymer Bulletin, 2006, 56, 47-52.	1.7	12
48	Plasma modification of cellulose fibers for composite materials. Journal of Applied Polymer Science, 2006, 101, 3821-3828.	1.3	69
49	Improvement of the interfacial compatibility between sugar cane bagasse fibers and polystyrene for composites. Polymer Composites, 2004, 25, 134-145.	2.3	36
50	Mechanical properties of continuous natural fibre-reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 2004, 35, 339-345.	3.8	369
51	Micromechanical Analysis of Thermoplastic– Thermoset Interphase. Macromolecular Symposia, 2004, 216, 117-130.	0.4	4
52	Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites. Composites Part A: Applied Science and Manufacturing, 2002, 33, 539-549.	3.8	96
53	Compatibilization of recycled and virgin PET with radiation-oxidized HDPE. Radiation Physics and Chemistry, 2002, 63, 241-244.	1.4	31
54	Electrical and thermal properties of recycled polypropylene-carbon black composites. Polymer Bulletin, 2001, 45, 509-516.	1.7	8

Pedro Herrera-Franco

#	Article	IF	CITATIONS
55	Review: Current international research into cellulosic fibres and composites. Journal of Materials Science, 2001, 36, 2107-2131.	1.7	777
56	Fiber–Matrix Interface Tests. , 2000, , 71-111.		34
57	Effect of fiber treatment on the mechanical properties of LDPE-henequen cellulosic fiber composites. Journal of Applied Polymer Science, 1997, 65, 197-207.	1.3	61
58	Preparation and characterization of henequen cellulose grafted with methyl methacrylate and its application in composites. Journal of Applied Polymer Science, 1997, 66, 339-346.	1.3	53
59	Strain-Relief Inserts for Composite Fasteners -An Experimental Study. Journal of Composite Materials, 1992, 26, 751-768.	1.2	17
60	Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites, 1992, 23, 2-27.	0.9	484
61	Bond strength measurement in composites—Analysis of experimental techniques. Composites Part B: Engineering, 1992, 2, 31-45.	0.6	22
62	Physical and mechanical properties of henequen fibers. Journal of Applied Polymer Science, 1991, 43, 749-756.	1.3	82