Geoffrey Michael Gadd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/897193/publications.pdf

Version: 2024-02-01

268 papers

19,590 citations

67 h-index 13771

g-index

288 all docs 288 docs citations

times ranked

288

14841 citing authors

#	Article	IF	CITATIONS
1	Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology (United Kingdom), 2010, 156, 609-643.	1.8	1,496
2	Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 2007, 111, 3-49.	2.5	1,015
3	Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 2009, 84, 13-28.	3.2	972
4	Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 2014, 160, 3-14.	9.6	827
5	Microbial influence on metal mobility and application for bioremediation. Geoderma, 2004, 122, 109-119.	5.1	611
6	Microorganisms and heavy metal toxicity. Microbial Ecology, 1977, 4, 303-317.	2.8	602
7	Fungal Production of Citric and Oxalic Acid: Importance in Metal Speciation, Physiology and Biogeochemical Processes. Advances in Microbial Physiology, 1999, 41, 47-92.	2.4	547
8	Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology, 2000, 11, 271-279.	6.6	464
9	Challenges in microbial fuel cell development and operation. Applied Microbiology and Biotechnology, 2007, 76, 485-494.	3.6	358
10	Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 2014, 28, 36-55.	4.7	291
11	Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 2002, 213, 1-6.	1.8	285
12	Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry, 2005, 37, 851-866.	8.8	231
13	Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum. Applied Microbiology and Biotechnology, 1987, 26, 84-90.	3.6	217
14	Microplastics provide new microbial niches in aquatic environments. Applied Microbiology and Biotechnology, 2020, 104, 6501-6511.	3.6	217
15	Biosorption of copper by fungal melanin. Applied Microbiology and Biotechnology, 1988, 29, 610-617.	3.6	206
16	An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnology, 1998, 16, 572-575.	17.5	205
17	Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Science of the Total Environment, 2000, 258, 119-127.	8.0	174
18	A novel biomonitoring system using microbial fuel cells. Journal of Environmental Monitoring, 2007, 9, 1323.	2.1	173

#	Article	IF	Citations
19	Geomycology: fungi in mineral substrata. The Mycologist, 2003, 17, 98-107.	0.4	170
20	Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiology Letters, 2004, 233, 77-82.	1.8	170
21	Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycological Research, 1997, 101, 653-661.	2.5	169
22	Lead mineral transformation by fungi. Current Biology, 1999, 9, 691-694.	3.9	169
23	Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 1998, 28, 87-94.	4.3	153
24	Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 2003, 35, 133-141.	8.8	149
25	The role of microorganisms in biosorption of toxic metals and radionuclides. International Biodeterioration and Biodegradation, 1995, 35, 17-40.	3.9	148
26	Linked Redox Precipitation of Sulfur and Seleniumunder Anaerobic Conditions by Sulfate-Reducing BacterialBiofilms. Applied and Environmental Microbiology, 2003, 69, 7063-7072.	3.1	144
27	Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Advances in Applied Microbiology, 2016, 94, 79-108.	2.4	143
28	Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiology Letters, 2006, 152, 293-298.	1.8	140
29	Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiology Letters, 2000, 183, 313-318.	1.8	135
30	Geomycology: metals, actinides and biominerals. Environmental Microbiology Reports, 2012, 4, 270-296.	2.4	132
31	Biomineralization of Metal Carbonates by <i>Neurospora crassa</i> . Environmental Science & Emp; Technology, 2014, 48, 14409-14416.	10.0	124
32	Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology (United) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
33	Sorption of toxic metals by fungi and clay minerals. Mycological Research, 1995, 99, 1429-1438.	2.5	121
34	Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere, 2003, 52, 541-547.	8.2	117
35	Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycological Research, 1995, 99, 987-993.	2.5	115
36	Biomineralization of Fungal Hyphae with Calcite (CaCO3) and Calcium Oxalate Mono- and Dihydrate in Carboniferous Limestone Microcosms. Geomicrobiology Journal, 2006, 23, 599-611.	2.0	115

#	Article	IF	CITATIONS
37	Biosorption of Radionuclides by Fungal Biomass. Journal of Chemical Technology and Biotechnology, 1990, 49, 331-343.	3.2	115
38	Characterization of Fungal Community Structure on a Weathered Pegmatitic Granite. Microbial Ecology, 2005, 50, 360-368.	2.8	114
39	Characterization of Bacterial Community Structure on a Weathered Pegmatitic Granite. Microbial Ecology, 2006, 51, 526-534.	2.8	114
40	Geomicrobiology of the built environment. Nature Microbiology, 2017, 2, 16275.	13.3	113
41	Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environmental Science & Environmental Science & 1764-1770.	10.0	110
42	lonic nutrition of yeastâ€"physiological mechanisms involved and implications for biotechnology. Enzyme and Microbial Technology, 1990, 12, 402-418.	3.2	106
43	Fungal transformations of uranium oxides. Environmental Microbiology, 2007, 9, 1696-1710.	3.8	101
44	Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycological Research, 1998, 102, 825-830.	2.5	99
45	Lead Transformation to Pyromorphite by Fungi. Current Biology, 2012, 22, 237-241.	3.9	99
46	Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere, 2017, 170, 266-273.	8.2	98
47	Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. Journal of Industrial Microbiology, 1991, 7, 97-104.	0.9	96
48	Functional Consequences of Nutrient Translocation in Mycelial Fungi. Journal of Theoretical Biology, 2002, 217, 459-477.	1.7	96
49	Geomicrobiology of Eukaryotic Microorganisms. Geomicrobiology Journal, 2010, 27, 491-519.	2.0	96
50	Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Science of the Total Environment, 2018, 610-611, 759-768.	8.0	96
51	The Development of Fungal Networks in Complex Environments. Bulletin of Mathematical Biology, 2007, 69, 605-634.	1.9	91
52	Applications of nanozymes in the environment. Environmental Science: Nano, 2020, 7, 1305-1318.	4.3	87
53	Fungal degradation of calcium-, lead- and silicon-bearing minerals. BioMetals, 2005, 18, 269-281.	4.1	85
54	Environmental adaptation is stronger for abundant rather than rare microorganisms in wetland soils from the Qinghaiâ€Tibet Plateau. Molecular Ecology, 2021, 30, 2390-2403.	3.9	85

#	Article	IF	CITATIONS
55	Growth and Function of Fungal Mycelia in Heterogeneous Environments. Bulletin of Mathematical Biology, 2003, 65, 447-477.	1.9	83
56	<scp>C</scp> a <scp>CO</scp> ₃ and <scp>S</scp> r <scp>CO</scp> ₃ bioprecipitation by fungi isolated from calcareous soil. Environmental Microbiology, 2015, 17, 3082-3097.	3.8	82
57	Mycotransformation of organic and inorganic substrates. The Mycologist, 2004, 18, 60-70.	0.4	78
58	Rock-Building Fungi. Geomicrobiology Journal, 2010, 27, 624-629.	2.0	78
59	Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite., 1998, 11, 101-106.		77
60	Role of fungi in the biogeochemical fate of depleted uranium. Current Biology, 2008, 18, R375-R377.	3.9	77
61	Fungal formation of selenium and tellurium nanoparticles. Applied Microbiology and Biotechnology, 2019, 103, 7241-7259.	3.6	77
62	Influence of nitrogen source on the solubilization of natural gypsum (CaSO4. 2H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi. Mycological Research, 1999, 103, 473-481.	2.5	75
63	Uranium phosphate biomineralization by fungi. Environmental Microbiology, 2015, 17, 2064-2075.	3 . 8	75
64	Practical field application of a novel BOD monitoring system. Journal of Environmental Monitoring, 2003, 5, 640.	2.1	74
65	Cadmium Accumulation and DNA Homology with Metal Resistance Genes in Sulfate-Reducing Bacteria. Applied and Environmental Microbiology, 2005, 71, 4610-4618.	3.1	74
66	Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 2006, 154, 29-35.	1.8	74
67	Metal and metalloid biorecovery using fungi. Microbial Biotechnology, 2017, 10, 1199-1205.	4.2	74
68	Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties. Applied Surface Science, 2019, 490, 231-241.	6.1	73
69	Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycological Research, 2001, 105, 1261-1267.	2.5	72
70	Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiology Ecology, 2002, 40, 65-71.	2.7	71
71	Uranium and Fungi. Geomicrobiology Journal, 2011, 28, 471-482.	2.0	71
72	Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae. BioMetals, 2004, 17, 183-188.	4.1	70

#	Article	IF	CITATIONS
73	Copper uptake by yeast-like cells, hyphae, and chlamydospores of Aureobasidium pullulans. Experimental Mycology, 1985, 9, 0-40.	1.6	69
74	The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresource Technology, 2015, 190, 395-401.	9.6	69
75	Fungi, Rocks, and Minerals. Elements, 2017, 13, 171-176.	0.5	67
76	Bioimmobilization of Heavy Metals in Acidic Copper Mine Tailings Soil. Geomicrobiology Journal, 2016, 33, 261-266.	2.0	66
77	Removal of selenate from sulfate-containing media by sulfate-reducing bacterial biofilms. Environmental Microbiology, 2006, 8, 816-826.	3.8	65
78	A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. Enzyme and Microbial Technology, 2008, 42, 404-413.	3.2	65
79	Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Applied Microbiology and Biotechnology, 2020, 104, 8999-9008.	3.6	65
80	Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization. Mycological Research, 1999, 103, 299-305.	2.5	64
81	X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environmental Microbiology, 2007, 9, 308-321.	3.8	64
82	Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environmental Microbiology, 2012, 14, 1744-1753.	3.8	63
83	Enhanced Antibacterial and Antiadhesive Activities of Silver-PTFE Nanocomposite Coating for Urinary Catheters. ACS Biomaterials Science and Engineering, 2019, 5, 2804-2814.	5.2	63
84	The oxalate–carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. , 2006, , 289-310.		62
85	Binding of copper and zinc to three cyanobacterial microcystins quantified by differential pulse polarography. Water Research, 1997, 31, 1679-1686.	11.3	62
86	Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans. Microbiology (United Kingdom), 1999, 145, 2987-2995.	1.8	61
87	Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. Journal of Chemical Technology and Biotechnology, 2003, 78, 23-34.	3.2	59
88	Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycological Research, 2003, 107, 861-871.	2.5	57
89	Influence of pH on toxicity and uptake of copper in Aureobasidium pullulans. Transactions of the British Mycological Society, 1980, 75, 91-96.	0.6	55
90	Negative fungal chemotropism to toxic metals. FEMS Microbiology Letters, 2000, 193, 207-211.	1.8	55

#	Article	IF	CITATIONS
91	Phosphataseâ€mediated bioprecipitation of lead by soil fungi. Environmental Microbiology, 2016, 18, 219-231.	3.8	55
92	Biosorption of tributyltin and other organotin compounds by cyanobacteria and microalgae. Applied Microbiology and Biotechnology, 1993, 39, 812-817.	3.6	54
93	Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiology Letters, 2001, 204, 311-316.	1.8	53
94	Lost in Translation: Pitfalls in Deciphering Plant Alternative Splicing Transcripts. Plant Cell, 2015, 27, 2083-2087.	6.6	53
95	Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials. Current Biology, 2016, 26, 950-955.	3.9	53
96	Fungal strategies for dealing with environment- and agriculture-induced stresses. Fungal Biology, 2018, 122, 602-612.	2.5	52
97	Accumulation and intracellular compartmentation of lithium ions inSaccharomyces cerevisiae. FEMS Microbiology Letters, 1993, 107, 255-260.	1.8	51
98	Bacterial and fungal geomicrobiology: a problem with communities?. Geobiology, 2008, 6, 278-284.	2.4	51
99	Influence of Fungi on the Environmental Mobility of Metals and Metalloids. , 0, , 237-256.		51
100	Zinc Phosphate Transformations by the Paxillus involutus/Pine Ectomycorrhizal Association. Microbial Ecology, 2006, 52, 322-333.	2.8	50
101	Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Applied Microbiology and Biotechnology, 2019, 103, 53-68.	3.6	50
102	Biodegradation of benzo(a)pyrene by a newly isolated <i>Fusarium</i> sp FEMS Microbiology Letters, 2006, 262, 99-106.	1.8	49
103	Fungal biotransformation of zinc silicate and sulfide mineral ores. Environmental Microbiology, 2013, 15, 2173-2186.	3.8	49
104	Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Applied Microbiology and Biotechnology, 2016, 100, 5141-5151.	3.6	48
105	Silver tolerance and accumulation in yeasts. Biology of Metals, 1991, 4, 100-106.	1.1	47
106	Influence of clay minerals on the morphology of fungal pellets. Mycological Research, 2002, 106, 107-117.	2.5	47
107	Microorganisms in Toxic Metal-Polluted Soils. , 2005, , 325-356.		46
108	Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure. Fungal Genetics and Biology, 2007, 44, 484-491.	2.1	46

#	Article	IF	Citations
109	Approaches to modelling mineral weathering by fungi. Fungal Biology Reviews, 2009, 23, 138-144.	4.7	44
110	Bioprotection of the built environment and cultural heritage. Microbial Biotechnology, 2017, 10, 1152-1156.	4.2	44
111	Uranium Bioreduction and Biomineralization. Advances in Applied Microbiology, 2017, 101, 137-168.	2.4	42
112	A sol–gel based silver nanoparticle/polytetrafluorethylene (AgNP/PTFE) coating with enhanced antibacterial and anti-corrosive properties. Applied Surface Science, 2021, 535, 147675.	6.1	42
113	Accumulation of zirconium by microalgae and cyanobacteria. Applied Microbiology and Biotechnology, 1993, 39, 666-672.	3.6	41
114	Biosynthesis of copper carbonate nanoparticles by ureolytic fungi. Applied Microbiology and Biotechnology, 2017, 101, 7397-7407.	3.6	41
115	Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungi. Applied Microbiology and Biotechnology, 2019, 103, 7217-7230.	3.6	40
116	Solubilization of metal phosphates by Rhizoctonia solani. Mycological Research, 2002, 106, 1468-1479.	2.5	39
117	Heavy Metal Tolerance and Biotransformation of Toxic Metal Compounds by New Isolates of Wood-Rotting Fungi from Thailand. Geomicrobiology Journal, 2016, 33, 283-288.	2.0	39
118	Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae: specificity and kinetics. Microbiology (United Kingdom), 1996, 142, 1159-1167.	1.8	38
119	Volatilization of selenite in aqueous medium by a Penicillium species. Mycological Research, 1996, 100, 955-961.	2.5	37
120	Pyromorphite formation in a fungal biofilm community growing on lead metal. Environmental Microbiology, 2014, 16, 1441-1451.	3.8	37
121	Translocation of carbon by Rhizoctonia solani in nutritionally-heterogeneous microcosms. Mycological Research, 2004, 108, 453-462.	2.5	36
122	Membraneâ€electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor. Environmental Technology (United Kingdom), 2009, 30, 329-336.	2.2	35
123	A Model Sheet Mineral System to Study Fungal Bioweathering of Mica. Geomicrobiology Journal, 2012, 29, 323-331.	2.0	35
124	Interactions between biogenic selenium nanoparticles and goethite colloids and consequence for remediation of elemental mercury contaminated groundwater. Science of the Total Environment, 2018, 613-614, 672-678.	8.0	35
125	Biomineralization, Bioremediation and Biorecovery of Toxic Metals and Radionuclides. Geomicrobiology Journal, 2016, 33, 175-178.	2.0	34

Transformation of vanadinite

126 [<scp><scp>Pb₅</scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp><

#	Article	IF	Citations
127	Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Science of the Total Environment, 2018, 615, 615-623.	8.0	33
128	Organic acids, siderophores, enzymes and mechanical pressure for black slate bioweathering with the basidiomycete <i>Schizophyllum commune</i> . Environmental Microbiology, 2020, 22, 1535-1546.	3.8	33
129	Nanoparticle and nanomineral production by fungi. Fungal Biology Reviews, 2022, 41, 31-44.	4.7	33
130	Fungal sequestration, mobilization and transformation of metals and metalloids., 1996,, 235-256.		32
131	The kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vacuolization response to high concentrations. Mycological Research, 2004, 108, 1415-1422.	2.5	32
132	Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere, 2014, 113, 17-21.	8.2	32
133	Superhydrophobic Coatings for Urinary Catheters To Delay Bacterial Biofilm Formation and Catheter-Associated Urinary Tract Infection. ACS Applied Bio Materials, 2020, 3, 282-291.	4.6	32
134	Fungal Nanophase Particles Catalyze Iron Transformation for Oxidative Stress Removal and Iron Acquisition. Current Biology, 2020, 30, 2943-2950.e4.	3.9	32
135	Toxicity of organotins towards the marine yeastDebaryomyces hansenii. Microbial Ecology, 1989, 17, 275-285.	2.8	31
136	Metal bioavailability and the soil microbiome. Advances in Agronomy, 2019, 155, 79-120.	5.2	31
137	Influence of copper on proton efflux fromSaccharomyces cerevisiaeand the protective effect of calcium and magnesium. FEMS Microbiology Letters, 1994, 122, 33-38.	1.8	30
138	Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the <scp>L</scp> ewis <scp>C</scp> hessmen. Environmental Microbiology, 2013, 15, 1050-1062.	3.8	30
139	Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations. Applied and Environmental Microbiology, 2015, 81, 4955-4964.	3.1	30
140	Biostabilization of Desert Sands Using Bacterially Induced Calcite Precipitation. Geomicrobiology Journal, 2016, 33, 243-249.	2.0	30
141	Interaction of Saccharomyces cerevisiae with gold: toxicity and accumulation., 1999, 12, 289-294.		29
142	The Geomicrobiology of Radionuclides. Geomicrobiology Journal, 2011, 28, 383-386.	2.0	29
143	Dredging alleviates cyanobacterial blooms by weakening diversity maintenance of bacterioplankton community. Water Research, 2021, 202, 117449.	11.3	29
144	Cadmium replaces calcium in the cell wall ofUlva lactuca. BioMetals, 1996, 9, 241-244.	4.1	28

#	Article	IF	CITATIONS
145	Fungal production of calcium oxalate in leaf litter microcosms. Soil Biology and Biochemistry, 1999, 31, 1189-1192.	8.8	28
146	Lichen biogeochemistry., 0,, 344-376.		28
147	Fungal nanoscale metal carbonates and production of electrochemical materials. Microbial Biotechnology, 2017, 10, 1131-1136.	4.2	28
148	A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China. Journal of Environmental Radioactivity, 2018, 189, 168-174.	1.7	28
149	Silver accumulation inPseudomonas stutzeri AG259. Biology of Metals, 1989, 2, 168-173.	1.1	27
150	Metal transformations. , 2001, , 359-382.		27
151	A positive numerical scheme for a mixed-type partial differential equation model for fungal growth. Applied Mathematics and Computation, 2003, 138, 321-340.	2.2	27
152	Lead Bioprecipitation by Yeasts Utilizing Organic Phosphorus Substrates. Geomicrobiology Journal, 2016, 33, 294-307.	2.0	27
153	Bisphenol A removal from a plastic industry wastewater by <i>Dracaena sanderiana</i> endophytic bacteria and <i>Bacillus cereus</i> NI. International Journal of Phytoremediation, 2020, 22, 167-175.	3.1	27
154	Natural abundance 13C-nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress. FEMS Microbiology Letters, 1991, 82, 163-168.	1.8	26
155	The Geomycology of Elemental Cycling and Transformations in the Environment. Microbiology Spectrum, 2017, 5, .	3.0	26
156	Biotransformation of struvite by <i>Aspergillus niger</i> : phosphate release and magnesium biomineralization as glushinskite. Environmental Microbiology, 2020, 22, 1588-1602.	3.8	26
157	Manipulation of yeast for transport studies: Critical assessment of cultural and experimental procedures. Enzyme and Microbial Technology, 1990, 12, 865-872.	3.2	25
158	Molecular Characterization of Fungal Communities in Sandstone. Geomicrobiology Journal, 2010, 27, 559-571.	2.0	25
159	The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology, 2017, 8, 205-215.	4.4	25
160	Monazite transformation into Ce―and Laâ€containing oxalates by <i>Aspergillus niger</i> Environmental Microbiology, 2020, 22, 1635-1648.	3.8	25
161	Biotransformation of lanthanum by Aspergillus niger. Applied Microbiology and Biotechnology, 2019, 103, 981-993.	3.6	24
162	Role of Protein in Fungal Biomineralization of Copper Carbonate Nanoparticles. Current Biology, 2021, 31, 358-368.e3.	3.9	24

#	Article	IF	CITATIONS
163	Title is missing!. BioMetals, 1997, 10, 105-117.	4.1	23
164	Influence of the carbon, nitrogen and phosphorus source on the solubilization of insoluble metal compounds by Aspergillus niger. Mycological Research, 1998, 102, 1050-1054.	2.5	23
165	Fungal–Mineral Interactions Modulating Intrinsic Peroxidase-like Activity of Iron Nanoparticles: Implications for the Biogeochemical Cycles of Nutrient Elements and Attenuation of Contaminants. Environmental Science & Technology, 2022, 56, 672-680.	10.0	23
166	Caesium transport in the cyanobacterium Anabaena variabilis: Kinetics and evidence for uptake via ammonium transport system(s). FEMS Microbiology Letters, 1992, 95, 253-258.	1.8	22
167	Inhibition of H+ efflux from Saccharomyces cerevisiae by insoluble metal phosphates and protection by calcium and magnesium: inhibitory effects a result of soluble metal cations?. Mycological Research, 1996, 100, 707-713.	2.5	22
168	A mathematical approach to studying fungal mycelia. The Mycologist, 2003, 17, 165-171.	0.4	22
169	A New Lead Hydroxycarbonate Produced During Transformation of Lead Metal by the Soil Fungus < i>Paecilomyces javanicus < /i>. Geomicrobiology Journal, 2016, 33, 250-260.	2.0	22
170	Stabilizing interaction of exopolymers with nano-Se and impact on mercury immobilization in soil and groundwater. Environmental Science: Nano, 2018, 5, 456-466.	4.3	22
171	Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles. Science of the Total Environment, 2019, 658, 8-15.	8.0	22
172	Fungi in subterranean environments. , 0, , 377-403.		21
173	Effect of salinity and pH on cobalt biosorption by the estuarine microalgaChlorella saliva. Biology of Metals, 1991, 4, 151-157.	1.1	21
174	Bioremediation of metals and metalloids by precipitation and cellular binding. , 2007, , 405-434.		21
175	Regulation of vectorial supply of vesicles to the hyphal tip determines thigmotropism in Neurospora crassa. Fungal Biology, 2014, 118, 287-294.	2.5	21
176	Chapter 6 Microbial interactions with metals/radionuclides: The basis of bioremediation. Radioactivity in the Environment, 2002, 2, 179-203.	0.2	20
177	Biorecovery of cobalt and nickel using biomass-free culture supernatants from Aspergillus niger. Applied Microbiology and Biotechnology, 2020, 104, 417-425.	3.6	20
178	Intrinsic enzymeâ€like activity of magnetite particles is enhanced by cultivation with ⟨i⟩Trichoderma guizhouense⟨ i⟩. Environmental Microbiology, 2021, 23, 893-907.	3.8	20
179	Characterisation of selenium and tellurium nanoparticles produced by Aureobasidium pullulans using a multi-method approach. Journal of Chromatography A, 2021, 1642, 462022.	3.7	20
180	Toxicity of organotins towards cyanobacterial photosynthesis and nitrogen fixation. FEMS Microbiology Letters, 1991, 84, 205-210.	1.8	19

#	Article	IF	Citations
181	Geomycology. Encyclopedia of Earth Sciences Series, 2011, , 416-432.	0.1	19
182	Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus. Applied Microbiology and Biotechnology, 2018, 102, 1019-1033.	3.6	19
183	The effect of exogenously-supplied nucleosides and nucleotides and the involvement of adenosine 3′:5â€ò-cyclic monophosphate (cyclic AMP) in the yeast mycelium transition of <i>Ceratocystis (=) Tj I</i>	ETQ % 1	1 0.7 8 4314 rgB
184	Biotransformation of \hat{l}^2 -hexachlorocyclohexane by the saprotrophic soil fungus Penicillium griseofulvum. Chemosphere, 2015, 137, 101-107.	8.2	18
185	Direct and Indirect Bioleaching of Cobalt from Low Grade Laterite and Pyritic Ores by <i>Aspergillus niger</i> . Geomicrobiology Journal, 2019, 36, 940-949.	2.0	18
186	Experimental and geochemical simulation of nickel carbonate mineral precipitation by carbonate-laden ureolytic fungal culture supernatants. Environmental Science: Nano, 2019, 6, 1866-1875.	4.3	18
187	Heteroaggregation of soil particulate organic matter and biogenic selenium nanoparticles for remediation of elemental mercury contamination. Chemosphere, 2019, 221, 486-492.	8.2	18
188	A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol-biodegrading agent. Applied Microbiology and Biotechnology, 2020, 104, 3611-3625.	3.6	18
189	Colonization and bioweathering of monazite by <i>Aspergillus niger</i> : solubilization and precipitation of rare earth elements. Environmental Microbiology, 2021, 23, 3970-3986.	3.8	18
190	Fungal-induced CaCO3 and SrCO3 precipitation: a potential strategy for bioprotection of concrete. Science of the Total Environment, 2022, 816, 151501.	8.0	18
191	Fungal biomineralization. Current Biology, 2021, 31, R1557-R1563.	3.9	18
192	Accumulation of technetium by cyanobacteria. Journal of Applied Phycology, 1993, 5, 307-315.	2.8	17
193	Enrichment with a polyunsaturated fatty acid enhances the survival ofSaccharomyces cerevisiaein the presence of tributyltin. FEMS Microbiology Letters, 1998, 167, 321-326.	1.8	17
194	Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 1997, 154, 29-35.	1.8	17
195	A mathematical process model for cadmium precipitation by sulfate-reducing bacterial biofilms. Biodegradation, 2003, 14, 139-151.	3.0	16
196	Mineral tunnelling by fungi., 0,, 311-327.		16
197	Factors Affecting the Sorption-Desorption of Trace Elements in Soil Environments., 2007,, 169-213.		16
198	Fractionation and Mobility of Trace Elements in Soils and Sediments. , 2007, , 467-520.		16

#	Article	IF	CITATIONS
199	Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment. BioMetals, 2013, 26, 489-505.	4.1	16
200	Transport and retention of biogenic selenium nanoparticles in biofilm-coated quartz sand porous media and consequence for elemental mercury immobilization. Science of the Total Environment, 2019, 692, 1116-1124.	8.0	16
201	Immobilization of elemental mercury by biogenic Se nanoparticles in soils of varying salinity. Science of the Total Environment, 2019, 668, 303-309.	8.0	16
202	Microbial biomodification of clay minerals. Advances in Applied Microbiology, 2021, 114, 111-139.	2.4	16
203	Colonization, penetration and transformation of manganese oxide nodules by <i>Aspergillus niger</i> . Environmental Microbiology, 2019, 21, 1821-1832.	3.8	15
204	Biocorrosion of copper metal by Aspergillus niger. International Biodeterioration and Biodegradation, 2020, 154, 105081.	3.9	14
205	Iron coral: Novel fungal biomineralization of nanoscale zerovalent iron composites for treatment of chlorinated pollutants. Chemical Engineering Journal, 2020, 402, 126263.	12.7	14
206	Rapid aerobic granulation using biochar for the treatment of petroleum refinery wastewater. Petroleum Science, 2020, 17, 1411-1421.	4.9	14
207	Effect of nutritional regime on accumulation of cobalt, manganese and zinc by green microalgae. FEMS Microbiology Letters, 1992, 98, 45-50.	1.8	13
208	Fungal roles and function in rock, mineral and soil transformations. , 0, , 201-232.		13
209	Perturbation of monovalent cation composition in Ulva lactuca by cadmium, copper and zinc. BioMetals, 1996, 9, 51.	4.1	12
210	Biogeochemical spatioâ€temporal transformation of copper in <scp><i>A</i></scp> <i>spergillus niger</i> colonies grown on malachite with different inorganic nitrogen sources. Environmental Microbiology, 2017, 19, 1310-1321.	3.8	12
211	Fungal transformation of selenium and tellurium located in a volcanogenic sulfide deposit. Environmental Microbiology, 2020, 22, 2346-2364.	3.8	12
212	Microbial Roles in Mineral Transformations and Metal Cycling in the Earth's Critical Zone. , 2013, , 115-165.		12
213	Chemical and Physical Mechanisms of Fungal Bioweathering of Rock Phosphate. Geomicrobiology Journal, 2021, 38, 384-394.	2.0	12
214	Transformation and Mobilization of Metals, Metalloids, and Radionuclides by Microorganisms. , 2007, , 53-96.		11
215	Effect of nutrient availability on hyphal maturation and topographical sensing in Aspergillus niger. Mycoscience, 2007, 48, 145-151.	0.8	11
216	The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology, 2017, 8, 216-227.	4.4	11

#	Article	IF	CITATIONS
217	Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections. International Journal of Energy Production and Management, 2022, 9, rbac013.	3.7	11
218	Interactions of Cs+ and other monovalent cations (Li+, Na+, K+, Rb+, NH4+) with K+-dependent pyruvate kinase and malate dehydrogenase from the yeasts Rhodotorula rubra and Saccharomyces cerevisiae. Mycological Research, 1996, 100, 449-454.	2.5	10
219	Geomycology: Fungi as Agents of Biogeochemical Change. Biology and Environment, 2013, 113, 1-15.	0.3	10
220	Rock phosphate solubilization by abiotic and fungalâ€produced oxalic acid: reaction parameters and bioleaching potential. Microbial Biotechnology, 2022, 15, 1189-1202.	4.2	10
221	Marine Microbial-Derived Antibiotics and Biosurfactants as Potential New Agents against Catheter-Associated Urinary Tract Infections. Marine Drugs, 2021, 19, 255.	4.6	10
222	Selective fungal bioprecipitation of cobalt and nickel for multipleâ€product metal recovery. Microbial Biotechnology, 2021, 14, 1747-1756.	4.2	10
223	Fungal colonization and biomineralization for bioprotection of concrete. Journal of Cleaner Production, 2022, 330, 129793.	9.3	10
224	Inhibition of Neutrophil Superoxide Secretion By of Preservative, Methylhydroxybenzoate: Effects Mediated By Perturbation of Intracellular Ca ²⁺ ?. Free Radical Research Communications, 1990, 10, 333-343.	1.8	9
225	Phenol degradation by Fusarium oxysporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxide. Chemosphere, 2009, 75, 765-771.	8.2	9
226	Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 2002, 213, 1-6.	1.8	9
227	Arsenic Toxicity: An Arsenic-Hyperaccumulating Fern Uses a Bacterial-like Tolerance Mechanism. Current Biology, 2019, 29, R580-R582.	3.9	8
228	Fungal transformation of natural and synthetic cobaltâ€bearing manganese oxides and implications for cobalt biogeochemistry. Environmental Microbiology, 2022, 24, 667-677.	3.8	8
229	Geomycology. Fungal Biology Reviews, 2009, 23, 91-93.	4.7	7
230	Zinc Oxalate Crystal Formation by Aspergillus nomius. Geomicrobiology Journal, 2016, 33, 289-293.	2.0	7
231	Molecular Trade-Offs between Lattice Oxygen and Oxygen Vacancy Drive Organic Pollutant Degradation in Fungal Biomineralized Exoskeletons. Environmental Science & Environmenta	10.0	7
232	The osmotic responses of Saccharomyces cerevisiae in K+-depleted medium. FEMS Microbiology Letters, 1991, 78, 89-94.	1.8	6
233	Modeling Adsorption of Metals and Metalloids by Soil Components. , 2007, , 215-264.		6
234	Mineral transformations and biogeochemical cycles: a geomycological perspective., 2007,, 77-111.		6

#	Article	IF	CITATIONS
235	Effect of depleted uranium on a soil microcosm fungal community and influence of a plant-ectomycorrhizal association. Fungal Biology, 2020, 124, 289-296.	2.5	6
236	Cadmium as an uncoupler of respiration in Ulva lactuca. Environmental Toxicology and Water Quality, 1992, 7, 189-200.	0.5	5
237	Characterisation of caesium transport in the microalga <i>Chlorella salina</i> . Biochemical Society Transactions, 1995, 23, 468S-468S.	3.4	5
238	Impacts of Physicochemical-Biological Interactions on Metal and Metalloid Transformations in Soils: An Overview., 2007, , 1-52.		5
239	Geomycology. Fungal Biology, 2016, , 371-401.	0.6	5
240	Effects of pH and Salinity on Adsorption of Hypersaline Photosynthetic Microbial Mat Exopolymers to Goethite: A Study Using a Quartz Crystal Microbalance and Fluorescence Spectroscopy. Geomicrobiology Journal, 2016, 33, 332-337.	2.0	5
241	Effects of pH Shock on Hg(II) Complexation by Exopolymers from <i>Acidithiobacillus ferrooxidans</i> . Geomicrobiology Journal, 2016, 33, 325-331.	2.0	5
242	Heavy Metal Pollutants: Environmental and Biotechnological Aspects. , 2019, , .		5
243	Solubilization of struvite and biorecovery of cerium by Aspergillus niger. Applied Microbiology and Biotechnology, 2022, 106, 821-833.	3.6	4
244	New horizons in geomycology. Environmental Microbiology Reports, 2017, 9, 4-7.	2.4	3
245	Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiology Letters, 1997, 152, 293-298.	1.8	3
246	Changes in cytochrome levels during growth of the yeast-like fungusAureobasidium pullulans. Current Microbiology, 1981, 6, 161-166.	2.2	2
247	Microbial influence on metal mobility and application for bioremediation. Geoderma, 2004, 122, 109-109.	5.1	2
248	Phosphate-Induced Lead Immobilization in Contaminated Soils: Mechanisms, Assessment, and Field Applications., 2007,, 607-629.		2
249	Microbial Role in Global Biogeochemical Cycling of Metals and Metalloids at the Interfaces in the Earth's Critical Zone. , 2010, , 5-7.		2
250	Microbial biotechnology in North America. Trends in Biotechnology, 1993, 11, 494-496.	9.3	1
251	Anaerobic respiration., 0,, 298-353.		1
252	TEMPORARY REMOVAL: Effects of oxathiapiprolin on photosynthetic activity of Chlorella pyrenoidosa probed by chlorophyll fluorescence and thermoluminescence assays. Pesticide Biochemistry and Physiology, 2017, 142, 161.	3.6	1

#	Article	IF	CITATIONS
253	The Geomycology of Elemental Cycling and Transformations in the Environment. , 2017, , 369-386.		1
254	Anaerobic respiration., 2019,, 268-320.		1
255	Influence of metals and metalloids on the composition and fluorescence quenching of the extracellular polymeric substances produced by the polymorphic fungus Aureobasidium pullulans. Applied Microbiology and Biotechnology, 2020, 104, 7155-7164.	3.6	1
256	Chapter 9 Geomycology, Mycology, 2017, , 119-136.	0.5	1
257	Transformation of metals and metalloids by microorganisms. , 2022, , .		1
258	Application of fungal copper carbonate nanoparticles as environmental catalysts: organic dye degradation and chromate removal. Microbiology (United Kingdom), 2021, 167, .	1.8	1
259	Title is missing!. Trends in Biotechnology, 1996, 14, 32-33.	9.3	O
260	Title is missing!. Trends in Biotechnology, 1996, 14, 33-34.	9.3	0
261	The Complexity of Aqueous Complexation: The Case of Aluminum- and Iron(III)-Citrate., 2007,, 373-416.		0
262	Sources and Mobility of Metallic Radionuclides in Soil Systems. , 2007, , 521-564.		0
263	Spectroscopic Techniques for Studying Metal-Humic Complexes in Soil. , 2007, , 125-168.		O
264	Wiley Series Sponsored by IUPAC in Biophysico-Chemical Processes in Environmental Systems. , 2007, , 659-659.		0
265	Dynamics and Bioavailability of Heavy Metals in the Rootzone. By H. M. Selim. Boca Raton, Fl, USA: CRC Press. Taylor and Francis (2011), pp. 299, £82.00. ISBN 978-1-4398-2622-5 Experimental Agriculture, 2012, 48, 153-154.	0.9	O
266	Nanobiotechnology. Current Opinion in Biotechnology, 2012, 23, 501-502.	6.6	0
267	Geoffrey Michael Gadd. Current Biology, 2020, 30, R966-R969.	3.9	0
268	Selenium and tellurium oxyanion reduction by yeasts. Access Microbiology, 2019, 1, .	0.5	0