Moulay T Sougrati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8971736/publications.pdf

Version: 2024-02-01

203 papers

15,068 citations

50 h-index 118 g-index

233 all docs

233 docs citations

times ranked

233

15190 citing authors

#	Article	IF	CITATIONS
1	Carbon-coated FePO4 nanoparticles as stable cathode for Na-ion batteries: A promising full cell with a Na15Pb4 anode. Electrochimica Acta, 2022, 409, 139997.	2.6	28
2	Exploration of a Na3V2(PO4)3/C –Pb full cell Na-ion prototype. Nano Energy, 2022, 95, 107010.	8.2	31
3	High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 311-323.	16.1	248
4	Probing the core and surface composition of nanoalloy to rationalize its selectivity: Study of Ni-Fe/SiO2 catalysts for liquid-phase hydrogenation. Chem Catalysis, 2022, 2, 1686-1708.	2.9	12
5	Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nature Catalysis, 2021, 4, 10-19.	16.1	368
6	Topotactically constructed nickel–iron (oxy)hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. Journal of Energy Chemistry, 2021, 57, 212-218.	7.1	50
7	Insights into the electronic structure of Fe penta-coordinated complexes. Spectroscopic examination and electrochemical analysis for the oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2021, 9, 23802-23816.	5.2	27
8	Investigating the Cycling Stability of Fe2WO6 Pseudocapacitive Electrode Materials. Nanomaterials, 2021, 11, 1405.	1.9	9
9	Understanding the Influence of Fe-N-C Cathode Catalyst Structure on Their Performance and Durability in High Performing Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-01, 1833-1833.	0.0	0
10	In Situ Observation of the Formation of Fe-N4 Sites Via Metalation during the Pyrolysis of Fe Precursors and N-Doped Carbon Matrix. ECS Meeting Abstracts, 2021, MA2021-01, 1832-1832.	0.0	0
11	Impact of Solution Chemistry on Growth and Structural Features of Mo-Substituted Spinel Iron Oxides. Inorganic Chemistry, 2021, 60, 7217-7227.	1.9	3
12	Chemical vapour deposition of Feâ \in "Nâ \in "C oxygen reduction catalysts with full utilization of dense Feâ \in "N4 sites. Nature Materials, 2021, 20, 1385-1391.	13.3	359
13	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	2.3	125
14	Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO ₂ Electroreduction to CO. ACS Catalysis, 2021, 11, 10028-10042.	5.5	37
15	In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis. Chem Catalysis, 2021, 1, 1215-1233.	2.9	24
16	Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox. Nature Chemistry, 2021, 13, 1070-1080.	6.6	75
17	In situ high temperature XRD study of Sr-doped ceramics La0.95Sr0.05MnO3+δ. Solid State Communications, 2021, 336, 114401.	0.9	4
18	Influence of the synthesis parameters on the proton exchange membrane fuel cells performance of Feâ \in Nâ \in C aerogel catalysts. Journal of Power Sources, 2021, 514, 230561.	4.0	17

#	Article	IF	CITATIONS
19	Alkaline-earth metal-doped perovskites La0.95A0.05MnO3+ \hat{l} (A = Ca, Sr): New structural and magnetic features revealed by 57Fe MA¶ssbauer spectroscopy and magnetic measurements. Journal of Physics and Chemistry of Solids, 2021, 159, 110268.	1.9	3
20	Si/Cu-Zn(ox)/C composite as anode material for Li-ion batteries. Solid State Ionics, 2021, 372, 115774.	1.3	5
21	Understanding how single-atom site density drives the performance and durability of PGM-free Fe–N–C cathodes in anion exchange membrane fuel cells. Materials Today Advances, 2021, 12, 100179.	2.5	18
22	Reversible High Capacity and Reaction Mechanism of Cr ₂ (NCN) ₃ Negative Electrodes for Liâ€ion Batteries. Energy Technology, 2020, 8, 1901260.	1.8	9
23	Evolution Pathway from Iron Compounds to Fe ₁ (II)–N ₄ Sites through Gas-Phase Iron during Pyrolysis. Journal of the American Chemical Society, 2020, 142, 1417-1423.	6.6	185
24	High-rate cyclability and stability of LiMn2O4 cathode materials for lithium-ion batteries from low-cost natural βâ^'MnO2. Energy Storage Materials, 2020, 26, 423-432.	9.5	69
25	Quantumâ€Chemical Study of the FeNCN Conversionâ€Reaction Mechanism in Lithium―and Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 3718-3723.	7.2	24
26	Electrochemical investigations of high-voltage Na4Ni3(PO4)2P2O7 cathode for sodium-ion batteries. Journal of Solid State Electrochemistry, 2020, 24, 17-24.	1.2	24
27	Towards valorizing natural coals in sodium-ion batteries: impact of coal rank on energy storage. Scientific Reports, 2020, 10, 15871.	1.6	7
28	P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 2020, 19, 1215-1223.	13.3	278
29	The Fe 4+/3+ Redox Mechanism in NaFeO 2 : A Simultaneous Operando Nuclear Resonance and Xâ€ray Scattering Study. Batteries and Supercaps, 2020, 3, 1341-1349.	2.4	10
30	Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy and Environmental Science, 2020, 13, 2480-2500.	15.6	205
31	Stable, Active, and Methanol-Tolerant PGM-Free Surfaces in an Acidic Medium: Electron Tunneling at Play in Pt/FeNC Hybrid Catalysts for Direct Methanol Fuel Cell Cathodes. ACS Catalysis, 2020, 10, 7475-7485.	5.5	28
32	Unravelling lithiation mechanisms of iron trifluoride by <i>operando</i> X-ray absorption spectroscopy and MCR-ALS chemometric tools. New Journal of Chemistry, 2020, 44, 10153-10164.	1.4	8
33	Iron―and Nitrogenâ€Doped Grapheneâ€Based Catalysts for Fuel Cell Applications. ChemElectroChem, 2020, 7, 1739-1747.	1.7	53
34	Characterizing Complex Gas–Solid Interfaces with in Situ Spectroscopy: Oxygen Adsorption Behavior on Fe–N–C Catalysts. Journal of Physical Chemistry C, 2020, 124, 16529-16543.	1.5	20
35	Quantumâ€Chemical Study of the FeNCN Conversionâ€Reaction Mechanism in Lithium―and Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 3747-3752.	1.6	2
36	Lithium-driven conversion and alloying mechanisms in core-shell Sn/SnOx nanoparticles. Solid State Sciences, 2020, 101, 106153.	1.5	2

#	Article	IF	CITATIONS
37	Structural Evolution of Iron(III) Trifluoroacetate upon Thermal Decomposition: Chains, Layers, and Rings. Chemistry of Materials, 2020, 32, 2482-2488.	3.2	7
38	A Highly Active Iron-Based ORR Catalyst Via Chemical Vapor Deposition. ECS Meeting Abstracts, 2020, MA2020-01, 1598-1598.	0.0	1
39	Move Beyond the Evolution Pathway for the Formation of M-N4 Sites upon Pyrolysis of the Mixture of M, N, and C Precursors. ECS Meeting Abstracts, 2020, MA2020-01, 1596-1596.	0.0	0
40	The Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-Doped Carbide-Derived Carbon Catalysts in Acid Media. ECS Meeting Abstracts, 2020, MA2020-02, 2269-2269.	0.0	0
41	Iron and Nitrogen-Doped Graphene As Cathode Catalyst for Anion Exchange Membrane Fuel Cell. ECS Meeting Abstracts, 2020, MA2020-02, 2393-2393.	0.0	0
42	Move Beyond the Evolution Pathway for the Formation of M-N ₄ Sites upon Pyrolysis of the Mixture of M, N, and C Precursors. ECS Meeting Abstracts, 2020, MA2020-02, 2274-2274.	0.0	0
43	An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox. Nature Communications, 2019, 10, 3483.	5.8	65
44	Revisiting the Phase Transition of Magnetite under Pressure. Journal of Physical Chemistry C, 2019, 123, 21114-21119.	1.5	7
45	Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nature Energy, 2019, 4, 977-987.	19.8	123
46	Cobalt Carbodiimide as Negative Electrode for Liâ€lon Batteries: Electrochemical Mechanism and Performance. ChemElectroChem, 2019, 6, 5101-5108.	1.7	11
47	ZnSnSb2 anode: A solid solution behavior enabling high rate capability in Li-ion batteries. Journal of Power Sources, 2019, 441, 227165.	4.0	7
48	Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-doped Carbide-Derived Carbon Catalysts in Acid Media. ACS Applied Energy Materials, 2019, 2, 7952-7962.	2.5	36
49	Understanding Active Sites in Pyrolyzed Fe–N–C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and ⁵⁷ Fe Mössbauer Spectroscopy. ACS Catalysis, 2019, 9, 9359-9371.	5 . 5	167
50	Elaboration and Characterization of Active Films Containing Iron–Montmorillonite Nanocomposites for O2 Scavenging. Nanomaterials, 2019, 9, 1193.	1.9	5
51	Designing the 3D Architecture of PGM-Free Cathodes for H ₂ /Air Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 7211-7222.	2.5	41
52	A Dissolution/Precipitation Equilibrium on the Surface of Iridiumâ€Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media. Angewandte Chemie - International Edition, 2019, 58, 4571-4575.	7.2	141
53	Applying chemometrics to study battery materials: Towards the comprehensive analysis of complex operando datasets. Energy Storage Materials, 2019, 18, 328-337.	9.5	44
54	Operando X-ray absorption spectroscopy applied to battery materials at ICGM: The challenging case of BiSb's sodiation. Energy Storage Materials, 2019, 21, 1-13.	9.5	12

#	Article	IF	Citations
55	SnSb <i>vs.</i> Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb. Journal of Materials Chemistry A, 2019, 7, 15262-15270.	5.2	50
56	A Dissolution/Precipitation Equilibrium on the Surface of Iridiumâ€Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media. Angewandte Chemie, 2019, 131, 4619-4623.	1.6	41
57	Bituminous Coal as Lowâ€Cost Anode Materials for Sodiumâ€lon and Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1900005.	1.8	16
58	The Challenge of Achieving a High Density of Fe-Based Active Sites in a Highly Graphitic Carbon Matrix. Catalysts, 2019, 9, 144.	1.6	22
59	Electrochemical Evaluation of Pb, Ag, and Zn Cyanamides/Carbodiimides. ACS Omega, 2019, 4, 4339-4347.	1.6	16
60	Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: Identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catalysis Today, 2019, 334, 162-172.	2.2	46
61	The Electrochemical Sodiation of FeSb2 : New Insights from Operando 57 Fe Synchrotron Mössbauer and X-Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 4-4.	2.4	0
62	Hybrid iron montmorillonite nano-particles as an oxygen scavenger. Chemical Engineering Journal, 2019, 357, 750-760.	6.6	12
63	The Electrochemical Sodiation of FeSb ₂ : New Insights from Operando ⁵⁷ Fe Synchrotron Mössbauer and Xâ€Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 66-73.	2.4	18
64	Elucidating the origin of superior electrochemical cycling performance: new insights on sodiation–desodiation mechanism of SnSb from <i>operando</i> spectroscopy. Journal of Materials Chemistry A, 2018, 6, 8724-8734.	5.2	31
65	Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Naâ€lon Batteries. Small, 2018, 14, e1703338.	5.2	86
66	Iron molybdate thin films prepared by sputtering and their electrochemical behavior in Li batteries. Journal of Alloys and Compounds, 2018, 735, 1454-1462.	2.8	8
67	Electrochemical Performance and Mechanisms of NaSn2(PO4)3/C Composites as Anode Materials for Li-lon Batteries. Journal of Physical Chemistry C, 2018, 122, 11194-11203.	1.5	9
68	Investigation of Ba0.5Sr0.5CoxFe1-xO3-δas a pseudocapacitive electrode material with high volumetric capacitance. Electrochimica Acta, 2018, 271, 677-684.	2.6	12
69	The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy and Environmental Science, 2018, 11, 3176-3182.	15.6	332
70	Stabilizing the Structure of LiCoPO4 Nanocrystals via Addition of Fe3+: Formation of Fe3+ Surface Layer, Creation of Diffusion-Enhancing Vacancies, and Enabling High-Voltage Battery Operation. Chemistry of Materials, 2018, 30, 6675-6683.	3.2	16
71	Stabilization of Iron-Based Fuel Cell Catalysts by Non-Catalytic Platinum. Journal of the Electrochemical Society, 2018, 165, F1084-F1091.	1.3	33
72	Electrochemical Mechanism and Effect of Carbon Nanotubes on the Electrochemical Performance of Fe _{1.19} (PO ₄)(OH) _{0.57} (H ₂ O) _{0.43} Cathode Material for Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34202-34211.	4.0	13

#	Article	IF	CITATIONS
73	Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons. Journal of Materials Chemistry A, 2018, 6, 14663-14674.	5.2	94
74	Understanding the Sn Loading Impact on the Performance of Mesoporous Carbon/Snâ€Based Nanocomposites in Liâ€Ion Batteries. ChemElectroChem, 2018, 5, 3249-3257.	1.7	12
75	The Electrochemical Sodiation of Sb Investigated by Operando X-ray Absorption and 121Sb Mössbauer Spectroscopy: What Does One Really Learn?. Batteries, 2018, 4, 25.	2.1	20
76	Carbodiimides as energy materials: which directions for a reasonable future?. Dalton Transactions, 2018, 47, 10827-10832.	1.6	51
77	On the high cycling stability of NbSnSb in Li-ion batteries at high temperature. Electrochimica Acta, 2018, 281, 619-623.	2.6	5
78	Li- and Na-ion Storage Performance of Natural Graphite via Simple Flotation Process. Journal of Electrochemical Science and Technology, 2018, 9, 320-329.	0.9	20
79	Electrochemical Reduction of CO ₂ Catalyzed by Fe-N-C Materials: A Structure–Selectivity Study. ACS Catalysis, 2017, 7, 1520-1525.	5. 5	363
80	SnSb electrodes for Li-ion batteries: the electrochemical mechanism and capacity fading origins elucidated by using operando techniques. Journal of Materials Chemistry A, 2017, 5, 6546-6555.	5.2	31
81	Na ₂ Fe(C ₂ O ₄)F ₂ : A New Iron-Based Polyoxyanion Cathode for Li/Na Ion Batteries. Chemistry of Materials, 2017, 29, 2167-2172.	3.2	40
82	Aging Processes in Lithiated FeSn ₂ Based Negative Electrode for Li-Ion Batteries: A New Challenge for Tin Based Intermetallic Materials. Journal of Physical Chemistry C, 2017, 121, 217-224.	1.5	13
83	Rhombohedral Iron Trifluoride with a Hierarchized Macroporous/Mesoporous Texture from Gaseous Fluorination of Iron Disilicide. E3S Web of Conferences, 2017, 16, 08001.	0.2	0
84	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€N Catalysts. Angewandte Chemie, 2017, 129, 8935-8938.	1.6	16
85	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€N Catalysts. Angewandte Chemie - International Edition, 2017, 56, 8809-8812.	7.2	176
86	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	10.2	486
87	Unidimensional unit cell variation and Fe+3/Fe+4 redox activity of Li3FeN2 in Li-ion batteries. Journal of Alloys and Compounds, 2017, 696, 971-979.	2.8	13
88	Reinvestigation of Na ₂ Fe ₂ (C ₂ O ₄) ₃ ·2H ₂ O: An Iron-Based Positive Electrode for Secondary Batteries. Chemistry of Materials, 2017, 29, 9095-9101.	3.2	21
89	The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials?. Electrochimica Acta, 2017, 257, 364-371.	2.6	15
90	Hydrothermal Preparation, Crystal Chemistry, and Redox Properties of Iron Muscovite Clay. ACS Applied Materials & District Science (2017), 9, 34024-34032.	4.0	5

#	Article	IF	CITATIONS
91	Evaluation of electrochemical performances of ZnFe ₂ 0 ₃ nanoparticles prepared by laser pyrolysis. New Journal of Chemistry, 2017, 41, 9236-9243.	1.4	16
92	In-Depth Analysis of the Conversion Mechanism of TiSnSb vs Li by Operando Triple-Edge X-ray Absorption Spectroscopy: a Chemometric Approach. Chemistry of Materials, 2017, 29, 10446-10454.	3.2	31
93	FeSi4P4: A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries. Journal of Power Sources, 2017, 372, 196-203.	4.0	10
94	Transitionâ€Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium―and Sodium―on Batteries with Excellent Cycling Properties. Angewandte Chemie - International Edition, 2016, 55, 5090-5095.	7.2	86
95	Übergangsmetallcarbodiimide als molekulare negative Elektroden―materialien fÃ⅓4r Li―und Naâ€Ionenbatterien mit hervorragendem Zyklisierungsverhalten. Angewandte Chemie, 2016, 128, 5174-5179.	1.6	11
96	Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium. ACS Catalysis, 2016, 6, 3136-3146.	5.5	201
97	Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.	8.2	269
98	Operando Mössbauer Spectroscopy Investigation of the Electrochemical Reaction with Lithium in Bronze-Type FeF ₃ ·0.33H ₂ O. Journal of Physical Chemistry C, 2016, 120, 23933-23943.	1.5	17
99	How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?. Journal of Physical Chemistry C, 2016, 120, 24521-24532.	1.5	35
100	Iron Phosphate/Bacteria Composites as Precursors for Textured Electrode Materials with Enhanced Electrochemical Properties. Journal of the Electrochemical Society, 2016, 163, A2139-A2148.	1.3	13
101	Synthesis, Structure, and Electrochemical Properties of Na3MB5O10 (M = Fe, Co) Containing M2+ in Tetrahedral Coordination. Inorganic Chemistry, 2016, 55, 12775-12782.	1.9	18
102	Electron transfer and spin transition in metal-hexacyanoferrates driven by anatase TiO ₂ : electronic and structural order effects. New Journal of Chemistry, 2016, 40, 10406-10411.	1.4	3
103	A novel route for FePO4 olivine synthesis from sarcopside oxidation. Solid State Sciences, 2016, 62, 29-33.	1.5	6
104	Unveiling the sodium intercalation properties in Na1.86 \hat{a} - \hat{i} 0.14Fe3(PO4)3. Journal of Power Sources, 2016, 324, 657-664.	4.0	38
105	Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy and Environmental Science, 2016, 9, 2418-2432.	15.6	472
106	Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries. Journal of Power Sources, 2016, 325, 346-350.	4.0	17
107	Structural reinvestigation of Li3FeN2: Evidence of cationic disorder through XRD, solid-state NMR and M¶ssbauer spectroscopy. Journal of Physics and Chemistry of Solids, 2016, 95, 37-42.	1.9	2
108	Effects of Relaxation on Conversion Negative Electrode Materials for Li-Ion Batteries: A Study of TiSnSb Using ¹¹⁹ Sn Mössbauer and ⁷ Li MAS NMR Spectroscopies. Chemistry of Materials, 2016, 28, 4032-4041.	3.2	12

#	Article	IF	Citations
109	Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: Operando Mössbauer study of spray-dried composites. Solar Energy Materials and Solar Cells, 2016, 148, 67-72.	3.0	27
110	Rhombohedral iron trifluoride with a hierarchized macroporous/mesoporous texture from gaseous fluorination of iron disilicide. Materials Chemistry and Physics, 2016, 173, 355-363.	2.0	8
111	Role of iron in Na 1.5Fe 0.5Ti 1.5(PO 4) 3/C as electrode material for Na-ion batteries studied by operando Mössbauer spectroscopy. Hyperfine Interactions, 2016, 237, 1.	0.2	6
112	Probing active sites in iron-based catalysts for oxygen electro-reduction: A temperature-dependent 57 Fe Mössbauer spectroscopy study. Catalysis Today, 2016, 262, 110-120.	2.2	70
113	Toward understanding the lithiation/delithiation process in Fe0.5TiOPO4/C electrode material for lithium-ion batteries. Solar Energy Materials and Solar Cells, 2016, 148, 11-19.	3.0	12
114	Engineering of Iron-Based Magnetic Activated Carbon Fabrics for Environmental Remediation. Materials, 2015, 8, 4593-4607.	1.3	30
115	Synthesis of Li 2 FeSiO 4 /carbon nano-composites by impregnation method. Journal of Power Sources, 2015, 284, 574-581.	4.0	20
116	(NH ₄) _{0.75} Fe(H ₂ O) ₂ [BP ₂ O ₈]·O.2 a Fe ³⁺ /Fe ²⁺ Mixed Valence Cathode Material for Na Battery Exhibiting a Helical Structure. Journal of Physical Chemistry C, 2015, 119, 4540-4549.	25H _{ 1.5}	20, 13
117	Unraveling the Structure of Iron(III) Oxalate Tetrahydrate and Its Reversible Li Insertion Capability. Chemistry of Materials, 2015, 27, 1631-1639.	3.2	30
118	Novel Complex Stacking of Fully-Ordered Transition Metal Layers in Li ₄ FeSbO ₆ Materials. Chemistry of Materials, 2015, 27, 1699-1708.	3.2	40
119	Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries. Journal of Power Sources, 2015, 280, 588-592.	4.0	67
120	Influence of relative humidity on the structure and electrochemical performance of sustainable LiFeSO ₄ F electrodes for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16988-16997.	5.2	32
121	Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy, 2015, 16, 293-300.	8.2	190
122	Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nature Communications, 2015, 6, 7343.	5.8	583
123	Reversible Li-Intercalation through Oxygen Reactivity in Li-Rich Li-Fe-Te Oxide Materials. Journal of the Electrochemical Society, 2015, 162, A1341-A1351.	1.3	47
124	Engineering of air-stable Fe/C/Pd composite nanoparticles for environmental remediation applications. Journal of Magnetism and Magnetic Materials, 2015, 389, 82-89.	1.0	9
125	Singular Structural and Electrochemical Properties in Highly Defective LiFePO (sub) 4 (/sub) Powders. Chemistry of Materials, 2015, 27, 4261-4273.	3.2	43
126	Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li ₄ FeSbO ₆ . Journal of the American Chemical Society, 2015, 137, 4804-4814.	6.6	155

#	Article	IF	CITATIONS
127	Synthesis, structure and electrochemical properties of metal malonate Na2M(H2C3O4)2·nH2O (nÂ=Â0, 2) compounds and comparison with oxalate Na2M2(C2O4)3·2H2O compounds. Solid State Sciences, 2015, 42, 6-13.	1.5	13
128	Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped grapheneÂmaterials. Nature Materials, 2015, 14, 937-942.	13.3	1,714
129	Mechanisms and Performances of Na1.5Fe0.5Ti1.5(PO4)3/C Composite as Electrode Material for Na-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 25220-25234.	1.5	31
130	Structural, electrochemical and magnetic properties of a novel KFeSO ₄ F polymorph. Journal of Materials Chemistry A, 2015, 3, 19754-19764.	5.2	36
131	xmlns:mml="http://www.w3.org/1998/Math/MathML" / display="inline"> <mml:mrow><mml:mrow><mml:mrow><mml:mpre></mml:mpre><mml:none></mml:none><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow> </td <td>scripts</td> <td>8</td>	scripts	8
132	Physical Review Letters, 2014, 113, 147601. Hydrothermal Preparation and Magnetic Properties of NaFeSi ₂ O ₆ : Nanowires vs Bulk Samples. Inorganic Chemistry, 2014, 53, 12396-12401.	1.9	9
133	New Fe ₂ TiO ₅ -based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses. Journal of Materials Chemistry A, 2014, 2, 6567-6577.	5.2	59
134	MnSn2 electrodes for Li-ion batteries: Mechanisms at the nano scale and electrode/electrolyte interface. Electrochimica Acta, 2014, 123, 72-83.	2.6	40
135	Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochimica Et Cosmochimica Acta, 2014, 139, 327-343.	1.6	55
136	Synthesis and characterization of iron, iron oxide and iron carbide nanostructures. Journal of Magnetism and Magnetic Materials, 2014, 349, 35-44.	1.0	37
137	Effect of Furfuryl Alcohol on Metal Organic Framework-based Fe/N/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Electrochimica Acta, 2014, 119, 192-205.	2.6	72
138	Low Temperature Preparation and Electrochemical Properties of LiFeSi2O6. Journal of the Electrochemical Society, 2014, 161, A1642-A1647.	1.3	10
139	Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na ₂ Mg(\$O ₄) ₂ ·4H ₂ O. Journal of Materials Chemistry A, 2014, 2, 2671-2680.	5.2	80
140	119Sn MÃ \P ssbauer spectroscopy study of the mechanism of lithium reaction with self-organized Ti1/2Sn1/2O2 nanotubes. Nanoscale, 2014, 6, 7827.	2.8	6
141	Degradation of Fe/N/C catalysts upon high polarization in acid medium. Physical Chemistry Chemical Physics, 2014, 16, 18454-18462.	1.3	182
142	Engineered Magnetic Core–Shell SiO2/Fe Microspheres and "Medusa-like―Microspheres of SiO2/Iron Oxide/Carbon Nanofibers or Nanotubes. Langmuir, 2014, 30, 9850-9858.	1.6	7
143	An Oxysulfate Fe2O(SO4)2 Electrode for Sustainable Li-Based Batteries. Journal of the American Chemical Society, 2014, 136, 12658-12666.	6.6	16
144	Synthesis and Electrochemical Performance of the Orthorhombic Li ₂ Fe(SO ₄) ₂ Polymorph for Li-lon Batteries. Chemistry of Materials, 2014, 26, 4178-4189.	3.2	53

#	Article	IF	Citations
145	Room-Temperature Synthesis of Iron-Doped Anatase TiO ₂ for Lithium-Ion Batteries and Photocatalysis. Inorganic Chemistry, 2014, 53, 10129-10139.	1.9	49
146	Study of the structural and thermal stability of Li0.3Co2/3Ni1/6Mn1/6O2. Electrochimica Acta, 2014, 135, 536-542.	2.6	7
147	Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries. Electrochemistry Communications, 2013, 32, 18-21.	2.3	152
148	Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Materials, 2013, 12, 827-835.	13.3	1,192
149	One-shot versus stepwise gas–solid synthesis of iron trifluoride: investigation of pure molecular F2 fluorination of chloride precursors. CrystEngComm, 2013, 15, 3664.	1.3	29
150	A new room temperature and solvent free carbon coating procedure for battery electrode materials. Energy and Environmental Science, 2013, 6, 3363.	15.6	37
151	Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions. International Journal of Hydrogen Energy, 2013, 38, 4798-4808.	3.8	56
152	Investigation of Fe incorporation in LnCr2Al20 (Ln = La, Gd, Yb) with 57Fe Mössbauer and Single Crystal X-ray Diffraction. Inorganic Chemistry, 2013, 52, 5055-5062.	1.9	6
153	Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. Journal of Power Sources, 2013, 224, 269-277.	4.0	89
154	First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular variation curve. Earth and Planetary Science Letters, 2013, 363, 168-180.	1.8	19
155	Structural and Mössbauer study of the Brownmillerite oxides LaSrMn2â^'xFexO5 (0⩽x⩽0.5). Journal of Alloys and Compounds, 2013, 581, 378-384.	2.8	7
156	Reactivity assessment of lithium with the different components of novel Si/Ni3.4Sn4/Al/C composite anode for Li-ion batteries. Journal of Power Sources, 2013, 238, 210-217.	4.0	8
157	Study of the series Tilâ^'yNbySnSb with 0Ââ‰ Â yÂâ‰ Â l as anode material for Li-ion batteries. Journal of Power Sources, 2013, 244, 736-741.	4.0	14
158	Quantitative Analysis of the Initial Restructuring Step of Nanostructured FeSn ₂ -Based Anodes for Li-Ion Batteries. Chemistry of Materials, 2013, 25, 2410-2420.	3.2	48
159	Optimized Synthesis of Fe/N/C Cathode Catalysts for PEM Fuel Cells: A Matter of Iron–Ligand Coordination Strength. Angewandte Chemie - International Edition, 2013, 52, 6867-6870.	7.2	195
160	Nanostructured Ni3.5Sn4 intermetallic compound: An efficient buffering material for Si-containing composite anodes in lithium ion batteries. Electrochimica Acta, 2013, 89, 365-371.	2.6	19
161	Identification and quantification of Sn-based species in trimetallic Pt-Sn-In/Al2O3-Cl naphtha-reforming catalysts. Hyperfine Interactions, 2013, 217, 137-144.	0.2	10
162	Combined operando studies of new electrode materials for Li-ion batteries. Hyperfine Interactions, 2013, 217, 107-115.	0.2	9

#	Article	IF	CITATIONS
163	Iron carbide nanoparticles growth in room temperature ionic liquids [C n -MIM][BF4] (nÂ=Â12, 16). Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
164	Bimetallic Sulfates A $<$ sub $>$ 2 $<$ /sub $>$ M(SO $<$ sub $>$ 4 $<$ /sub $>$) $<$ sub $>$ 2 $<$ /sub $>$.nH $<$ sub $>$ 2 $<$ /sub $>$ O (A = Li, Na and M) Tj ET Transactions, 2013, 50, 11-19.	Qq0 0 0 rg 0.3	gBT /Overlo 28
165	Synthesis, Magnetism, and $\langle \sup 57 \langle \sup Fe M \tilde{A} \P s s bauer Spectroscopic Study of a Family of [Ln < sub > 3 < / sub > Fe < sub > 7 < / sub >] Coordination Clusters (Ln = Gd, Tb, and Er). Inorganic Chemistry, 2013, 52, 11767-11777.$	1.9	30
166	Evidence of oxygen-dependent modulation in LuFe <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> O <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>4</mml:mn></mml:msub></mml:math> . Physical Review B, 2012, 85, .	1.1	34
167	A combined MA¶ssbauer spectroscopy and x-ray diffraction operando study of Sn-based composite anode materials for Li-ion accumulators. Journal of Solid State Electrochemistry, 2012, 16, 3837-3848.	1.2	20
168	Operando 57Fe MÃ \P ssbauer and XRD investigation of LixMnyFe1â $^{\circ}$ yPO4/C composites (y = 0; 0.25). RSC Advances, 2012, 2, 2080.	1.7	23
169	Single-Step Synthesis of FeSO ₄ F _{1–<i>y</i>} OH _{<i>y</i>} (0 ≤i>y)	Tj ETQq1 I	1 0 784314 35
170	Li2Fe(SO4)2 as a 3.83V positive electrode material. Electrochemistry Communications, 2012, 21, 77-80.	2.3	76
171	Preparation and Characterization of a Stable FeSO ₄ F-Based Framework for Alkali Ion Insertion Electrodes. Chemistry of Materials, 2012, 24, 4363-4370.	3.2	210
172	Operando 57Fe MÃ \P ssbauer and XRD investigation of LixMnyFe1-yPO4/C composites (y = 0.50; 0.75). RSC Advances, 2012, 2, 9517.	1.7	19
173	Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism. Journal of the American Chemical Society, 2012, 134, 20805-20811.	6.6	849
174	Role of Structure and Interfaces in the Performance of TiSnSb as an Electrode for Li-Ion Batteries. Chemistry of Materials, 2012, 24, 4735-4743.	3.2	23
175	How Mössbauer spectroscopy can improve Li-ion batteries. Hyperfine Interactions, 2012, 206, 35-46.	0.2	20
176	Gas counter for low temperature Conversion Electron Mössbauer Spectroscopy experiments. Hyperfine Interactions, 2012, 211, 83-97.	0.2	4
177	Magnetic interactions at the origin of abnormal magnetic fabrics in lava flows: a case study from Kerguelen flood basalts. Geophysical Journal International, 2012, 189, 815-832.	1.0	20
178	Iron Speciation in the Clays Consummated in Côte d'Ivoire: A Transmission Mössbauer Spectroscopy Study. Asian Journal of Applied Sciences, 2012, 5, 460-472.	0.4	3
179	Combined operando studies of new electrode materials for Li-ion batteries. , 2012, , 107-115.		О
180	Autocatalytic sonolysis of iron pentacarbonyl in room temperature ionic liquid [BuMelm] [Tf ₂ N]. Physical Chemistry Chemical Physics, 2011, 13, 2111-2113.	1.3	6

#	Article	IF	Citations
181	Synthesis of New Fluorosulphate Materials Using Different Approaches. ECS Transactions, 2011, 35, 57-63.	0.3	2
182	TiSnSb a new efficient negative electrode for Li-ion batteries: mechanism investigations by operando-XRD and Mössbauer techniques. Journal of Materials Chemistry, 2011, 21, 10069.	6.7	58
183	Slow magnetic relaxation and electron delocalization in anS=9/2iron(II/III) complex with two crystallographically inequivalent iron sites. Journal of Chemical Physics, 2011, 134, 174507.	1.2	28
184	A $3.90V$ iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature Materials, $2011, 10, 772-779$.	13.3	301
185	Local ordering and magnetism in Ga0.9Fe3.1N. Journal of Solid State Chemistry, 2011, 184, 2315-2321.	1.4	22
186	Nanostructured Si/Sn–Ni/C composite as negative electrode for Li-ion batteries. Journal of Power Sources, 2011, 196, 4762-4768.	4.0	44
187	A seven-coordinate iron platform and its oxo and nitrene reactivity. Inorganica Chimica Acta, 2011, 369, 82-91.	1.2	31
188	Crystal Growth, Transport, and the Structural and Magnetic Properties of Ln ₄ FeGa ₁₂ with Ln = Y, Tb, Dy, Ho, and Er. Inorganic Chemistry, 2010, 49, 445-456.	1.9	18
189	Fluorosulfate Positive Electrodes for Li-Ion Batteries Made via a Solid-State Dry Process. Journal of the Electrochemical Society, 2010, 157, A1007.	1.3	46
190	Slow Magnetic Relaxation in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. Journal of the American Chemical Society, 2010, 132, 18115-18126.	6.6	317
191	Structural Chemistry and Magnetic Properties of Ln ₁₈ Li ₈ Rh _{5â^²<i>x</i>} Fe _{<i>x</i>} O ₃₉ (Ln =) Tj E	T Q q110).7 8 4314 rgE
192	Structural, Electronic, and Magnetic Properties of UFeS ₃ and UFeSe ₃ . Inorganic Chemistry, 2010, 49, 10455-10467.	1.9	21
193	A study of the high temperature spin reorientation in YCoFe ₃ B. Journal of Physics Condensed Matter, 2009, 21, 186001.	0.7	5
194	Removing Compositional Boundaries in Mixed-Linker Keplerate Clusters. European Journal of Inorganic Chemistry, 2009, 2009, 5071-5074.	1.0	12
195	Structural and magnetic properties of Pr18Li8Fe5â^'xMxO39 (M=Ru, Mn, Co). Journal of Solid State Chemistry, 2009, 182, 1638-1648.	1.4	7
196	Magnetic and ⁵⁷ Fe Mössbauer Study of the Single Molecule Magnet Behavior of a Dy ₃ Fe ₇ Coordination Cluster. Inorganic Chemistry, 2009, 48, 9345-9355.	1.9	96
197	Hyperfine interactions and lattice dynamics of Sn21O6Cl16(OH)14. Journal of Solid State Chemistry, 2008, 181, 2473-2479.	1.4	4
198	Phase transitions in LaFeAsO: Structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra. Physical Review B, 2008, 78, .	1.1	284

#	ARTICLE	IF	CITATIONS
199	A structural, magnetic and Mössbauer spectral study of the magnetocaloric Mn _{1.1} Fe _{0.9} P _{1â^²<i>x</i>} Ge _{<i>x</i>condensed Matter, 2008, 20, 475206.}	0.7	23
200	Fourier transform infrared spectroscopic study of abhurite Sn21O6Cl16(OH)14. Materials Chemistry and Physics, 2007, 105, 189-193.	2.0	9
201	Relative Lamb–Mössbauer factors of tin corrosion products. Hyperfine Interactions, 2006, 167, 815-818.	0.2	16
202	Porous Si/Cu6Sn5/C composite containing native oxides as anode material for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 0, , 1.	1,1	1
203	The low temperature synthesis of very small and nonâ€crystalline ironâ€based nanoparticles: application in alkene hydrosilylation European Journal of Inorganic Chemistry, 0, , .	1.0	1