Moulay T Sougrati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8971736/publications.pdf Version: 2024-02-01

		38660	19136
203	15,068	50	118
papers	citations	h-index	g-index
233	233	233	15190
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped grapheneÂmaterials. Nature Materials, 2015, 14, 937-942.	13.3	1,714
2	Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Materials, 2013, 12, 827-835.	13.3	1,192
3	Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism. Journal of the American Chemical Society, 2012, 134, 20805-20811.	6.6	849
4	Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nature Communications, 2015, 6, 7343.	5.8	583
5	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	10.2	486
6	Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy and Environmental Science, 2016, 9, 2418-2432.	15.6	472
7	Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nature Catalysis, 2021, 4, 10-19.	16.1	368
8	Electrochemical Reduction of CO ₂ Catalyzed by Fe-N-C Materials: A Structure–Selectivity Study. ACS Catalysis, 2017, 7, 1520-1525.	5.5	363
9	Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nature Materials, 2021, 20, 1385-1391.	13.3	359
10	The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy and Environmental Science, 2018, 11, 3176-3182.	15.6	332
11	Slow Magnetic Relaxation in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. Journal of the American Chemical Society, 2010, 132, 18115-18126.	6.6	317
12	A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature Materials, 2011, 10, 772-779.	13.3	301
13	Phase transitions in LaFeAsO: Structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra. Physical Review B, 2008, 78, .	1.1	284
14	P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 2020, 19, 1215-1223.	13.3	278
15	Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.	8.2	269
16	High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 311-323.	16.1	248
17	Preparation and Characterization of a Stable FeSO ₄ F-Based Framework for Alkali Ion Insertion Electrodes. Chemistry of Materials, 2012, 24, 4363-4370.	3.2	210
18	Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy and Environmental Science, 2020, 13, 2480-2500.	15.6	205

Moulay T Sougrati

#	Article	IF	CITATIONS
19	Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium. ACS Catalysis, 2016, 6, 3136-3146.	5.5	201
20	Optimized Synthesis of Fe/N/C Cathode Catalysts for PEM Fuel Cells: A Matter of Iron–Ligand Coordination Strength. Angewandte Chemie - International Edition, 2013, 52, 6867-6870.	7.2	195
21	Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy, 2015, 16, 293-300.	8.2	190
22	Evolution Pathway from Iron Compounds to Fe ₁ (II)–N ₄ Sites through Gas-Phase Iron during Pyrolysis. Journal of the American Chemical Society, 2020, 142, 1417-1423.	6.6	185
23	Degradation of Fe/N/C catalysts upon high polarization in acid medium. Physical Chemistry Chemical Physics, 2014, 16, 18454-18462.	1.3	182
24	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€N Catalysts. Angewandte Chemie - International Edition, 2017, 56, 8809-8812.	7.2	176
25	Understanding Active Sites in Pyrolyzed Fe–N–C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and ⁵⁷ Fe M¶ssbauer Spectroscopy. ACS Catalysis, 2019, 9, 9359-9371.	5.5	167
26	Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li ₄ FeSbO ₆ . Journal of the American Chemical Society, 2015, 137, 4804-4814.	6.6	155
27	Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries. Electrochemistry Communications, 2013, 32, 18-21.	2.3	152
28	A Dissolution/Precipitation Equilibrium on the Surface of Iridiumâ€Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media. Angewandte Chemie - International Edition, 2019, 58, 4571-4575.	7.2	141
29	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	2.3	125
30	Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nature Energy, 2019, 4, 977-987.	19.8	123
31	Magnetic and ⁵⁷ Fe Mössbauer Study of the Single Molecule Magnet Behavior of a Dy ₃ Fe ₇ Coordination Cluster. Inorganic Chemistry, 2009, 48, 9345-9355.	1.9	96
32	Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons. Journal of Materials Chemistry A, 2018, 6, 14663-14674.	5.2	94
33	Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. Journal of Power Sources, 2013, 224, 269-277.	4.0	89
34	Transitionâ€Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium―and Sodiumâ€Ion Batteries with Excellent Cycling Properties. Angewandte Chemie - International Edition, 2016, 55, 5090-5095.	7.2	86
35	Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Naâ€lon Batteries. Small, 2018, 14, e1703338.	5.2	86
36	Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na ₂ Mg(SO ₄) ₂ ·4H ₂ O. Journal of Materials Chemistry A, 2014, 2, 2671-2680.	5.2	80

#	Article	IF	CITATIONS
37	Li2Fe(SO4)2 as a 3.83V positive electrode material. Electrochemistry Communications, 2012, 21, 77-80.	2.3	76
38	Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox. Nature Chemistry, 2021, 13, 1070-1080.	6.6	75
39	Effect of Furfuryl Alcohol on Metal Organic Framework-based Fe/N/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Electrochimica Acta, 2014, 119, 192-205.	2.6	72
40	Probing active sites in iron-based catalysts for oxygen electro-reduction: A temperature-dependent 57 Fe Mössbauer spectroscopy study. Catalysis Today, 2016, 262, 110-120.	2.2	70
41	High-rate cyclability and stability of LiMn2O4 cathode materials for lithium-ion batteries from low-cost natural βâ^'MnO2. Energy Storage Materials, 2020, 26, 423-432.	9.5	69
42	Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries. Journal of Power Sources, 2015, 280, 588-592.	4.0	67
43	An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox. Nature Communications, 2019, 10, 3483.	5.8	65
44	New Fe ₂ TiO ₅ -based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses. Journal of Materials Chemistry A, 2014, 2, 6567-6577.	5.2	59
45	TiSnSb a new efficient negative electrode for Li-ion batteries: mechanism investigations by operando-XRD and Mössbauer techniques. Journal of Materials Chemistry, 2011, 21, 10069.	6.7	58
46	Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions. International Journal of Hydrogen Energy, 2013, 38, 4798-4808.	3.8	56
47	Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochimica Et Cosmochimica Acta, 2014, 139, 327-343.	1.6	55
48	Synthesis and Electrochemical Performance of the Orthorhombic Li ₂ Fe(SO ₄) ₂ Polymorph for Li-Ion Batteries. Chemistry of Materials, 2014, 26, 4178-4189.	3.2	53
49	Iron―and Nitrogenâ€Đoped Grapheneâ€Based Catalysts for Fuel Cell Applications. ChemElectroChem, 2020, 7, 1739-1747.	1.7	53
50	Carbodiimides as energy materials: which directions for a reasonable future?. Dalton Transactions, 2018, 47, 10827-10832.	1.6	51
51	SnSb <i>vs.</i> Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb. Journal of Materials Chemistry A, 2019, 7, 15262-15270.	5.2	50
52	Topotactically constructed nickel–iron (oxy)hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. Journal of Energy Chemistry, 2021, 57, 212-218.	7.1	50
53	Room-Temperature Synthesis of Iron-Doped Anatase TiO ₂ for Lithium-Ion Batteries and Photocatalysis. Inorganic Chemistry, 2014, 53, 10129-10139.	1.9	49
54	Quantitative Analysis of the Initial Restructuring Step of Nanostructured FeSn ₂ -Based Anodes for Li-Ion Batteries. Chemistry of Materials, 2013, 25, 2410-2420.	3.2	48

#	Article	IF	CITATIONS
55	Reversible Li-Intercalation through Oxygen Reactivity in Li-Rich Li-Fe-Te Oxide Materials. Journal of the Electrochemical Society, 2015, 162, A1341-A1351.	1.3	47
56	Fluorosulfate Positive Electrodes for Li-Ion Batteries Made via a Solid-State Dry Process. Journal of the Electrochemical Society, 2010, 157, A1007.	1.3	46
57	Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: Identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catalysis Today, 2019, 334, 162-172.	2.2	46
58	Nanostructured Si/Sn–Ni/C composite as negative electrode for Li-ion batteries. Journal of Power Sources, 2011, 196, 4762-4768.	4.0	44
59	Applying chemometrics to study battery materials: Towards the comprehensive analysis of complex operando datasets. Energy Storage Materials, 2019, 18, 328-337.	9.5	44
60	Singular Structural and Electrochemical Properties in Highly Defective LiFePO ₄ Powders. Chemistry of Materials, 2015, 27, 4261-4273.	3.2	43
61	Designing the 3D Architecture of PGM-Free Cathodes for H ₂ /Air Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 7211-7222.	2.5	41
62	A Dissolution/Precipitation Equilibrium on the Surface of Iridiumâ€Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media. Angewandte Chemie, 2019, 131, 4619-4623.	1.6	41
63	MnSn2 electrodes for Li-ion batteries: Mechanisms at the nano scale and electrode/electrolyte interface. Electrochimica Acta, 2014, 123, 72-83.	2.6	40
64	Novel Complex Stacking of Fully-Ordered Transition Metal Layers in Li ₄ FeSbO ₆ Materials. Chemistry of Materials, 2015, 27, 1699-1708.	3.2	40
65	Na ₂ Fe(C ₂ O ₄)F ₂ : A New Iron-Based Polyoxyanion Cathode for Li/Na Ion Batteries. Chemistry of Materials, 2017, 29, 2167-2172.	3.2	40
66	Unveiling the sodium intercalation properties in Na1.86â–¡0.14Fe3(PO4)3. Journal of Power Sources, 2016, 324, 657-664.	4.0	38
67	A new room temperature and solvent free carbon coating procedure for battery electrode materials. Energy and Environmental Science, 2013, 6, 3363.	15.6	37
68	Synthesis and characterization of iron, iron oxide and iron carbide nanostructures. Journal of Magnetism and Magnetic Materials, 2014, 349, 35-44.	1.0	37
69	Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO ₂ Electroreduction to CO. ACS Catalysis, 2021, 11, 10028-10042.	5.5	37
70	Structural, electrochemical and magnetic properties of a novel KFeSO ₄ F polymorph. Journal of Materials Chemistry A, 2015, 3, 19754-19764.	5.2	36
71	Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-doped Carbide-Derived Carbon Catalysts in Acid Media. ACS Applied Energy Materials, 2019, 2, 7952-7962.	2.5	36
72	Single-Step Synthesis of FeSO ₄ F _{1–<i>y</i>} OH _{<i>y</i>} (0 ≤i>y <td>>) Tj ETQq(</td> <td>0 0 <u>0</u> rgBT /Ov</td>	>) Tj ETQq(0 0 <u>0</u> rgBT /Ov

#	Article	IF	CITATIONS
73	How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?. Journal of Physical Chemistry C, 2016, 120, 24521-24532.	1.5	35
74	Evidence of oxygen-dependent modulation in LuFe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>4</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2012, 85, .</mml:math </mml:math 	1.1	34
75	Stabilization of Iron-Based Fuel Cell Catalysts by Non-Catalytic Platinum. Journal of the Electrochemical Society, 2018, 165, F1084-F1091.	1.3	33
76	Influence of relative humidity on the structure and electrochemical performance of sustainable LiFeSO ₄ F electrodes for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16988-16997.	5.2	32
77	A seven-coordinate iron platform and its oxo and nitrene reactivity. Inorganica Chimica Acta, 2011, 369, 82-91.	1.2	31
78	Mechanisms and Performances of Na1.5Fe0.5Ti1.5(PO4)3/C Composite as Electrode Material for Na-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 25220-25234.	1.5	31
79	SnSb electrodes for Li-ion batteries: the electrochemical mechanism and capacity fading origins elucidated by using operando techniques. Journal of Materials Chemistry A, 2017, 5, 6546-6555.	5.2	31
80	In-Depth Analysis of the Conversion Mechanism of TiSnSb vs Li by Operando Triple-Edge X-ray Absorption Spectroscopy: a Chemometric Approach. Chemistry of Materials, 2017, 29, 10446-10454.	3.2	31
81	Elucidating the origin of superior electrochemical cycling performance: new insights on sodiation–desodiation mechanism of SnSb from <i>operando</i> spectroscopy. Journal of Materials Chemistry A, 2018, 6, 8724-8734.	5.2	31
82	Exploration of a Na3V2(PO4)3/C –Pb full cell Na-ion prototype. Nano Energy, 2022, 95, 107010.	8.2	31
83	Synthesis, Magnetism, and ⁵⁷ Fe Mössbauer Spectroscopic Study of a Family of [Ln ₃ Fe ₇] Coordination Clusters (Ln = Gd, Tb, and Er). Inorganic Chemistry, 2013, 52, 11767-11777.	1.9	30
84	Engineering of Iron-Based Magnetic Activated Carbon Fabrics for Environmental Remediation. Materials, 2015, 8, 4593-4607.	1.3	30
85	Unraveling the Structure of Iron(III) Oxalate Tetrahydrate and Its Reversible Li Insertion Capability. Chemistry of Materials, 2015, 27, 1631-1639.	3.2	30
86	One-shot versus stepwise gas–solid synthesis of iron trifluoride: investigation of pure molecular F2 fluorination of chloride precursors. CrystEngComm, 2013, 15, 3664.	1.3	29
87	Slow magnetic relaxation and electron delocalization in anS=9/2iron(II/III) complex with two crystallographically inequivalent iron sites. Journal of Chemical Physics, 2011, 134, 174507.	1.2	28
88	Bimetallic Sulfates A ₂ M(SO ₄) ₂ .nH ₂ O (A = Li, Na and M) Tj E Transactions, 2013, 50, 11-19.	TQq0 0 0 0.3	rgBT /Overloo 28
89	Stable, Active, and Methanol-Tolerant PGM-Free Surfaces in an Acidic Medium: Electron Tunneling at Play in Pt/FeNC Hybrid Catalysts for Direct Methanol Fuel Cell Cathodes. ACS Catalysis, 2020, 10, 7475-7485.	5.5	28
90	Carbon-coated FePO4 nanoparticles as stable cathode for Na-ion batteries: A promising full cell with	2.6	28

a Na15Pb4 anode. Electrochimica Acta, 2022, 409, 139997.

6

#	Article	IF	CITATIONS
91	Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: Operando Mössbauer study of spray-dried composites. Solar Energy Materials and Solar Cells, 2016, 148, 67-72.	3.0	27
92	Insights into the electronic structure of Fe penta-coordinated complexes. Spectroscopic examination and electrochemical analysis for the oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2021, 9, 23802-23816.	5.2	27
93	Quantumâ€Chemical Study of the FeNCN Conversionâ€Reaction Mechanism in Lithium―and Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 3718-3723.	7.2	24
94	Electrochemical investigations of high-voltage Na4Ni3(PO4)2P2O7 cathode for sodium-ion batteries. Journal of Solid State Electrochemistry, 2020, 24, 17-24.	1.2	24
95	In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis. Chem Catalysis, 2021, 1, 1215-1233.	2.9	24
96	A structural, magnetic and Mössbauer spectral study of the magnetocaloric Mn _{1.1} Fe _{0.9} P _{1â``<i>x</i>} Ge _{<i>x</i>} compounds. Journal of Physics Condensed Matter, 2008, 20, 475206.	0.7	23
97	Operando57Fe Mössbauer and XRD investigation of LixMnyFe1â^'yPO4/C composites (y = 0; 0.25). RSC Advances, 2012, 2, 2080.	1.7	23
98	Role of Structure and Interfaces in the Performance of TiSnSb as an Electrode for Li-Ion Batteries. Chemistry of Materials, 2012, 24, 4735-4743.	3.2	23
99	Local ordering and magnetism in Ga0.9Fe3.1N. Journal of Solid State Chemistry, 2011, 184, 2315-2321.	1.4	22
100	The Challenge of Achieving a High Density of Fe-Based Active Sites in a Highly Graphitic Carbon Matrix. Catalysts, 2019, 9, 144.	1.6	22
101	Structural, Electronic, and Magnetic Properties of UFeS ₃ and UFeSe ₃ . Inorganic Chemistry, 2010, 49, 10455-10467.	1.9	21
102	Reinvestigation of Na ₂ Fe ₂ (C ₂ O ₄) ₃ ·2H ₂ O: An Iron-Based Positive Electrode for Secondary Batteries. Chemistry of Materials, 2017, 29, 9095-9101.	3.2	21
103	A combined Mössbauer spectroscopy and x-ray diffraction operando study of Sn-based composite anode materials for Li-ion accumulators. Journal of Solid State Electrochemistry, 2012, 16, 3837-3848.	1.2	20
104	How Mössbauer spectroscopy can improve Li-ion batteries. Hyperfine Interactions, 2012, 206, 35-46.	0.2	20
105	Magnetic interactions at the origin of abnormal magnetic fabrics in lava flows: a case study from Kerguelen flood basalts. Geophysical Journal International, 2012, 189, 815-832.	1.0	20
106	Synthesis of Li 2 FeSiO 4 /carbon nano-composites by impregnation method. Journal of Power Sources, 2015, 284, 574-581.	4.0	20
107	The Electrochemical Sodiation of Sb Investigated by Operando X-ray Absorption and 121Sb Mössbauer Spectroscopy: What Does One Really Learn?. Batteries, 2018, 4, 25.	2.1	20
108	Characterizing Complex Gas–Solid Interfaces with in Situ Spectroscopy: Oxygen Adsorption Behavior on Fe–N–C Catalysts. Journal of Physical Chemistry C, 2020, 124, 16529-16543.	1.5	20

#	Article	IF	CITATIONS
109	Li- and Na-ion Storage Performance of Natural Graphite via Simple Flotation Process. Journal of Electrochemical Science and Technology, 2018, 9, 320-329.	0.9	20
110	Operando57Fe Mössbauer and XRD investigation of LixMnyFe1-yPO4/C composites (y = 0.50; 0.75). RSC Advances, 2012, 2, 9517.	1.7	19
111	First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular variation curve. Earth and Planetary Science Letters, 2013, 363, 168-180.	1.8	19
112	Nanostructured Ni3.5Sn4 intermetallic compound: An efficient buffering material for Si-containing composite anodes in lithium ion batteries. Electrochimica Acta, 2013, 89, 365-371.	2.6	19
113	Crystal Growth, Transport, and the Structural and Magnetic Properties of Ln ₄ FeGa ₁₂ with Ln = Y, Tb, Dy, Ho, and Er. Inorganic Chemistry, 2010, 49, 445-456.	1.9	18
114	Synthesis, Structure, and Electrochemical Properties of Na3MB5O10 (M = Fe, Co) Containing M2+ in Tetrahedral Coordination. Inorganic Chemistry, 2016, 55, 12775-12782.	1.9	18
115	The Electrochemical Sodiation of FeSb ₂ : New Insights from Operando ⁵⁷ Fe Synchrotron Mössbauer and Xâ€Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 66-73.	2.4	18
116	Understanding how single-atom site density drives the performance and durability of PGM-free Fe–N–C cathodes in anion exchange membrane fuel cells. Materials Today Advances, 2021, 12, 100179.	2.5	18
117	Operando Mössbauer Spectroscopy Investigation of the Electrochemical Reaction with Lithium in Bronze-Type FeF ₃ ·0.33H ₂ O. Journal of Physical Chemistry C, 2016, 120, 23933-23943.	1.5	17
118	Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries. Journal of Power Sources, 2016, 325, 346-350.	4.0	17
119	Influence of the synthesis parameters on the proton exchange membrane fuel cells performance of Fe–N–C aerogel catalysts. Journal of Power Sources, 2021, 514, 230561.	4.0	17
120	Relative Lamb–Mössbauer factors of tin corrosion products. Hyperfine Interactions, 2006, 167, 815-818.	0.2	16
121	An Oxysulfate Fe2O(SO4)2 Electrode for Sustainable Li-Based Batteries. Journal of the American Chemical Society, 2014, 136, 12658-12666.	6.6	16
122	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€Nâ€C Catalysts. Angewandte Chemie, 2017, 129, 8935-8938.	1.6	16
123	Evaluation of electrochemical performances of ZnFe ₂ O ₄ /l³-Fe ₂ O ₃ nanoparticles prepared by laser pyrolysis. New Journal of Chemistry, 2017, 41, 9236-9243.	1.4	16
124	Stabilizing the Structure of LiCoPO4 Nanocrystals via Addition of Fe3+: Formation of Fe3+ Surface Layer, Creation of Diffusion-Enhancing Vacancies, and Enabling High-Voltage Battery Operation. Chemistry of Materials, 2018, 30, 6675-6683.	3.2	16
125	Bituminous Coal as Lowâ€Cost Anode Materials for Sodiumâ€ion and Lithiumâ€ion Batteries. Energy Technology, 2019, 7, 1900005.	1.8	16
126	Electrochemical Evaluation of Pb, Ag, and Zn Cyanamides/Carbodiimides. ACS Omega, 2019, 4, 4339-4347.	1.6	16

#	Article	IF	CITATIONS
127	The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials?. Electrochimica Acta, 2017, 257, 364-371.	2.6	15
128	Study of the series Tilâ^'yNbySnSb with OÂâ‰ÂyÂâ‰Âl as anode material for Li-ion batteries. Journal of Power Sources, 2013, 244, 736-741.	4.0	14
129	(NH ₄) _{0.75} Fe(H ₂ O) ₂ [BP ₂ O ₈]·0.2 a Fe ³⁺ /Fe ²⁺ Mixed Valence Cathode Material for Na Battery Exhibiting a Helical Structure. Journal of Physical Chemistry C, 2015, 119, 4540-4549.	5H _{2 1.5}	20, 13
130	Synthesis, structure and electrochemical properties of metal malonate Na2M(H2C3O4)2·nH2O (nÂ=Â0, 2) compounds and comparison with oxalate Na2M2(C2O4)3·2H2O compounds. Solid State Sciences, 2015, 42, 6-13.	1.5	13
131	Iron Phosphate/Bacteria Composites as Precursors for Textured Electrode Materials with Enhanced Electrochemical Properties. Journal of the Electrochemical Society, 2016, 163, A2139-A2148.	1.3	13
132	Aging Processes in Lithiated FeSn ₂ Based Negative Electrode for Li-Ion Batteries: A New Challenge for Tin Based Intermetallic Materials. Journal of Physical Chemistry C, 2017, 121, 217-224.	1.5	13
133	Unidimensional unit cell variation and Fe+3/Fe+4 redox activity of Li3FeN2 in Li-ion batteries. Journal of Alloys and Compounds, 2017, 696, 971-979.	2.8	13
134	Electrochemical Mechanism and Effect of Carbon Nanotubes on the Electrochemical Performance of Fe _{1.19} (PO ₄)(OH) _{0.57} (H ₂ O) _{0.43} Cathode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 34202-34211.	4.0	13
135	Removing Compositional Boundaries in Mixed-Linker Keplerate Clusters. European Journal of Inorganic Chemistry, 2009, 2009, 5071-5074.	1.0	12
136	Effects of Relaxation on Conversion Negative Electrode Materials for Li-Ion Batteries: A Study of TiSnSb Using ¹¹⁹ Sn Mössbauer and ⁷ Li MAS NMR Spectroscopies. Chemistry of Materials, 2016, 28, 4032-4041.	3.2	12
137	Toward understanding the lithiation/delithiation process in Fe0.5TiOPO4/C electrode material for lithium-ion batteries. Solar Energy Materials and Solar Cells, 2016, 148, 11-19.	3.0	12
138	Investigation of Ba0.5Sr0.5CoxFe1-xO3-δas a pseudocapacitive electrode material with high volumetric capacitance. Electrochimica Acta, 2018, 271, 677-684.	2.6	12
139	Understanding the Sn Loading Impact on the Performance of Mesoporous Carbon/Snâ€Based Nanocomposites in Liâ€lon Batteries. ChemElectroChem, 2018, 5, 3249-3257.	1.7	12
140	Operando X-ray absorption spectroscopy applied to battery materials at ICGM: The challenging case of BiSb's sodiation. Energy Storage Materials, 2019, 21, 1-13.	9.5	12
141	Hybrid iron montmorillonite nano-particles as an oxygen scavenger. Chemical Engineering Journal, 2019, 357, 750-760.	6.6	12
142	Probing the core and surface composition of nanoalloy to rationalize its selectivity: Study of Ni-Fe/SiO2 catalysts for liquid-phase hydrogenation. Chem Catalysis, 2022, 2, 1686-1708.	2.9	12
143	Übergangsmetallcarbodiimide als molekulare negative Elektroden―materialien für Li―und Naâ€Ionenbatterien mit hervorragendem Zyklisierungsverhalten. Angewandte Chemie, 2016, 128, 5174-5179.	1.6	11
144	Cobalt Carbodiimide as Negative Electrode for Liâ€ion Batteries: Electrochemical Mechanism and Performance. ChemElectroChem, 2019, 6, 5101-5108.	1.7	11

#	Article	IF	CITATIONS
145	Identification and quantification of Sn-based species in trimetallic Pt-Sn-In/Al2O3-Cl naphtha-reforming catalysts. Hyperfine Interactions, 2013, 217, 137-144.	0.2	10
146	Low Temperature Preparation and Electrochemical Properties of LiFeSi2O6. Journal of the Electrochemical Society, 2014, 161, A1642-A1647.	1.3	10
147	FeSi4P4: A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries. Journal of Power Sources, 2017, 372, 196-203.	4.0	10
148	The Fe 4+/3+ Redox Mechanism in NaFeO 2 : A Simultaneous Operando Nuclear Resonance and Xâ€ray Scattering Study. Batteries and Supercaps, 2020, 3, 1341-1349.	2.4	10
149	Fourier transform infrared spectroscopic study of abhurite Sn21O6Cl16(OH)14. Materials Chemistry and Physics, 2007, 105, 189-193.	2.0	9
150	Combined operando studies of new electrode materials for Li-ion batteries. Hyperfine Interactions, 2013, 217, 107-115.	0.2	9
151	Hydrothermal Preparation and Magnetic Properties of NaFeSi ₂ O ₆ : Nanowires vs Bulk Samples. Inorganic Chemistry, 2014, 53, 12396-12401.	1.9	9
152	Engineering of air-stable Fe/C/Pd composite nanoparticles for environmental remediation applications. Journal of Magnetism and Magnetic Materials, 2015, 389, 82-89.	1.0	9
153	Electrochemical Performance and Mechanisms of NaSn2(PO4)3/C Composites as Anode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 11194-11203.	1.5	9
154	Reversible High Capacity and Reaction Mechanism of Cr ₂ (NCN) ₃ Negative Electrodes for Liâ€lon Batteries. Energy Technology, 2020, 8, 1901260.	1.8	9
155	Investigating the Cycling Stability of Fe2WO6 Pseudocapacitive Electrode Materials. Nanomaterials, 2021, 11, 1405.	1.9	9
156	Reactivity assessment of lithium with the different components of novel Si/Ni3.4Sn4/Al/C composite anode for Li-ion batteries. Journal of Power Sources, 2013, 238, 210-217.	4.0	8
157	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Ru</mml:mi></mml:mrow><mml:mpre /><mml:none /><mml:mrow><mml:mn>99</mml:mn></mml:mrow></mml:none </mml:mpre </mml:mmultiscripts></mml:mrow> .	escripts 2.9	8
158	Physical Review Letters, 2014, 113, 147601. Rhombohedral iron trifluoride with a hierarchized macroporous/mesoporous texture from gaseous fluorination of iron disilicide. Materials Chemistry and Physics, 2016, 173, 355-363.	2.0	8
159	Iron molybdate thin films prepared by sputtering and their electrochemical behavior in Li batteries. Journal of Alloys and Compounds, 2018, 735, 1454-1462.	2.8	8
160	Unravelling lithiation mechanisms of iron trifluoride by <i>operando</i> X-ray absorption spectroscopy and MCR-ALS chemometric tools. New Journal of Chemistry, 2020, 44, 10153-10164.	1.4	8
161	Structural and magnetic properties of Pr18Li8Fe5â^xMxO39 (M=Ru, Mn, Co). Journal of Solid State Chemistry, 2009, 182, 1638-1648.	1.4	7
	Structural Chemietry and Magnetia Dreparties of		_

Structural Chemistry and Magnetic Properties of Ln₁₈Li₈Rh_{5â^'<i>x</i>}Fe_{<i>x</i>}O₃₉ (Ln =) Tj ETQq0 0 0 rgBT /Overlo

#	Article	IF	CITATIONS
163	Structural and Mössbauer study of the Brownmillerite oxides LaSrMn2â^'xFexO5 (0⩽x⩽0.5). Journal of Alloys and Compounds, 2013, 581, 378-384.	2.8	7
164	Iron carbide nanoparticles growth in room temperature ionic liquids [C n -MIM][BF4] (nÂ=Â12, 16). Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
165	Engineered Magnetic Core–Shell SiO2/Fe Microspheres and "Medusa-like―Microspheres of SiO2/Iron Oxide/Carbon Nanofibers or Nanotubes. Langmuir, 2014, 30, 9850-9858.	1.6	7
166	Study of the structural and thermal stability of Li0.3Co2/3Ni1/6Mn1/6O2. Electrochimica Acta, 2014, 135, 536-542.	2.6	7
167	Revisiting the Phase Transition of Magnetite under Pressure. Journal of Physical Chemistry C, 2019, 123, 21114-21119.	1.5	7
168	ZnSnSb2 anode: A solid solution behavior enabling high rate capability in Li-ion batteries. Journal of Power Sources, 2019, 441, 227165.	4.0	7
169	Towards valorizing natural coals in sodium-ion batteries: impact of coal rank on energy storage. Scientific Reports, 2020, 10, 15871.	1.6	7
170	Structural Evolution of Iron(III) Trifluoroacetate upon Thermal Decomposition: Chains, Layers, and Rings. Chemistry of Materials, 2020, 32, 2482-2488.	3.2	7
171	Autocatalytic sonolysis of iron pentacarbonyl in room temperature ionic liquid [BuMelm][Tf ₂ N]. Physical Chemistry Chemical Physics, 2011, 13, 2111-2113.	1.3	6
172	Investigation of Fe incorporation in LnCr2Al20 (Ln = La, Gd, Yb) with 57Fe Mössbauer and Single Crystal X-ray Diffraction. Inorganic Chemistry, 2013, 52, 5055-5062.	1.9	6
173	119Sn Mössbauer spectroscopy study of the mechanism of lithium reaction with self-organized Ti1/2Sn1/2O2 nanotubes. Nanoscale, 2014, 6, 7827.	2.8	6
174	A novel route for FePO4 olivine synthesis from sarcopside oxidation. Solid State Sciences, 2016, 62, 29-33.	1.5	6
175	Role of iron in Na 1.5Fe 0.5Ti 1.5(PO 4) 3/C as electrode material for Na-ion batteries studied by operando Mössbauer spectroscopy. Hyperfine Interactions, 2016, 237, 1.	0.2	6
176	A study of the high temperature spin reorientation in YCoFe ₃ B. Journal of Physics Condensed Matter, 2009, 21, 186001.	0.7	5
177	Hydrothermal Preparation, Crystal Chemistry, and Redox Properties of Iron Muscovite Clay. ACS Applied Materials & Interfaces, 2017, 9, 34024-34032.	4.0	5
178	On the high cycling stability of NbSnSb in Li-ion batteries at high temperature. Electrochimica Acta, 2018, 281, 619-623.	2.6	5
179	Elaboration and Characterization of Active Films Containing Iron–Montmorillonite Nanocomposites for O2 Scavenging. Nanomaterials, 2019, 9, 1193.	1.9	5
180	Si/Cu-Zn(ox)/C composite as anode material for Li-ion batteries. Solid State Ionics, 2021, 372, 115774.	1.3	5

Moulay T Sougrati

#	Article	IF	CITATIONS
181	Hyperfine interactions and lattice dynamics of Sn21O6Cl16(OH)14. Journal of Solid State Chemistry, 2008, 181, 2473-2479.	1.4	4
182	Gas counter for low temperature Conversion Electron Mössbauer Spectroscopy experiments. Hyperfine Interactions, 2012, 211, 83-97.	0.2	4
183	In situ high temperature XRD study of Sr-doped ceramics La0.95Sr0.05MnO3+δ. Solid State Communications, 2021, 336, 114401.	0.9	4
184	Electron transfer and spin transition in metal-hexacyanoferrates driven by anatase TiO ₂ : electronic and structural order effects. New Journal of Chemistry, 2016, 40, 10406-10411.	1.4	3
185	Impact of Solution Chemistry on Growth and Structural Features of Mo-Substituted Spinel Iron Oxides. Inorganic Chemistry, 2021, 60, 7217-7227.	1.9	3
186	Alkaline-earth metal-doped perovskites La0.95A0.05MnO3+Î′ (A = Ca, Sr): New structural and magnetic features revealed by 57Fe Mössbauer spectroscopy and magnetic measurements. Journal of Physics and Chemistry of Solids, 2021, 159, 110268.	1.9	3
187	Iron Speciation in the Clays Consummated in Côte d'Ivoire: A Transmission Mössbauer Spectroscopy Study. Asian Journal of Applied Sciences, 2012, 5, 460-472.	0.4	3
188	Synthesis of New Fluorosulphate Materials Using Different Approaches. ECS Transactions, 2011, 35, 57-63.	0.3	2
189	Structural reinvestigation of Li3FeN2: Evidence of cationic disorder through XRD, solid-state NMR and MA¶ssbauer spectroscopy. Journal of Physics and Chemistry of Solids, 2016, 95, 37-42.	1.9	2
190	Quantumâ€Chemical Study of the FeNCN Conversionâ€Reaction Mechanism in Lithium―and Sodiumâ€ŀon Batteries. Angewandte Chemie, 2020, 132, 3747-3752.	1.6	2
191	Lithium-driven conversion and alloying mechanisms in core-shell Sn/SnOx nanoparticles. Solid State Sciences, 2020, 101, 106153.	1.5	2
192	A Highly Active Iron-Based ORR Catalyst Via Chemical Vapor Deposition. ECS Meeting Abstracts, 2020, MA2020-01, 1598-1598.	0.0	1
193	Porous Si/Cu6Sn5/C composite containing native oxides as anode material for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	1
194	The low temperature synthesis of very small and nonâ€crystalline ironâ€based nanoparticles: application in alkene hydrosilylation European Journal of Inorganic Chemistry, 0, , .	1.0	1
195	Rhombohedral Iron Trifluoride with a Hierarchized Macroporous/Mesoporous Texture from Gaseous Fluorination of Iron Disilicide. E3S Web of Conferences, 2017, 16, 08001.	0.2	Ο
196	The Electrochemical Sodiation of FeSb2 : New Insights from Operando 57 Fe Synchrotron Mössbauer and X-Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 4-4.	2.4	0
197	Understanding the Influence of Fe-N-C Cathode Catalyst Structure on Their Performance and Durability in High Performing Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-01, 1833-1833.	0.0	0
198	In Situ Observation of the Formation of Fe-N4 Sites Via Metalation during the Pyrolysis of Fe Precursors and N-Doped Carbon Matrix. ECS Meeting Abstracts, 2021, MA2021-01, 1832-1832.	0.0	0

#	Article	IF	CITATIONS
199	Combined operando studies of new electrode materials for Li-ion batteries. , 2012, , 107-115.		0
200	Move Beyond the Evolution Pathway for the Formation of M-N4 Sites upon Pyrolysis of the Mixture of M, N, and C Precursors. ECS Meeting Abstracts, 2020, MA2020-01, 1596-1596.	0.0	0
201	The Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-Doped Carbide-Derived Carbon Catalysts in Acid Media. ECS Meeting Abstracts, 2020, MA2020-02, 2269-2269.	0.0	Ο
202	Iron and Nitrogen-Doped Graphene As Cathode Catalyst for Anion Exchange Membrane Fuel Cell. ECS Meeting Abstracts, 2020, MA2020-02, 2393-2393.	0.0	0
203	Move Beyond the Evolution Pathway for the Formation of M-N ₄ Sites upon Pyrolysis of the Mixture of M, N, and C Precursors. ECS Meeting Abstracts, 2020, MA2020-02, 2274-2274.	0.0	0