Katharina F Kubatzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8971550/publications.pdf

Version: 2024-02-01

448610 425179 1,249 35 19 34 citations g-index h-index papers 41 41 41 1931 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts. Biological Chemistry, 2022, 403, 211-229.	1.2	7
2	Plumbagin, a Biomolecule with (Anti)Osteoclastic Properties. International Journal of Molecular Sciences, 2021, 22, 2779.	1.8	9
3	Ras Isoforms from Lab Benches to Lives—What Are We Missing and How Far Are We?. International Journal of Molecular Sciences, 2021, 22, 6508.	1.8	5
4	An Activity-Based Probe for Cathepsin K Imaging with Excellent Potency and Selectivity. Journal of Medicinal Chemistry, 2021, 64, 13793-13806.	2.9	10
5	Chronic Implant-Related Bone Infections—Can Immune Modulation be a Therapeutic Strategy?. Frontiers in Immunology, 2019, 10, 1724.	2.2	124
6	Conceptual Evolution of Cell Signaling. International Journal of Molecular Sciences, 2019, 20, 3292.	1.8	86
7	An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. International Journal of Molecular Sciences, 2019, 20, 2113.	1.8	60
8	Influence of Pasteurella multocida Toxin on the differentiation of dendritic cells into osteoclasts. Immunobiology, 2018, 223, 142-150.	0.8	12
9	From macrophage to osteoclast – How metabolism determines function and activity. Cytokine, 2018, 112, 102-115.	1.4	43
10	Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells. Archives of Toxicology, 2017, 91, 2191-2208.	1.9	26
11	Pasteurella multocida Toxin Triggers RANKL-Independent Osteoclastogenesis. Frontiers in Immunology, 2017, 8, 185.	2.2	16
12	Phospho-Flow Analysis of Primary Mouse Cells After HDAC Inhibitor Treatment. Methods in Molecular Biology, 2017, 1510, 233-243.	0.4	2
13	Editorial: Bacterial Exotoxins: How Bacteria Fight the Immune System. Frontiers in Immunology, 2016, 7, 300.	2.2	14
14	Pasteurella multocida toxin- induced osteoclastogenesis requires mTOR activation. Cell Communication and Signaling, 2015, 13, 40.	2.7	11
15	Pasteurella multocida Toxin Manipulates T Cell Differentiation. Frontiers in Microbiology, 2015, 6, 1273.	1.5	23
16	Erythropoietin acts as an anti-inflammatory signal on murine mast cells. Molecular Immunology, 2015, 65, 68-76.	1.0	10
17	Granzyme A Produces Bioactive IL- \hat{l}^2 through a Nonapoptotic Inflammasome-Independent Pathway. Cell Reports, 2014, 9, 910-917.	2.9	41
18	S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Tollâ€like receptor 4. EMBO Molecular Medicine, 2014, 6, 778-794.	3.3	66

#	Article	lF	CITATIONS
19	Signaling Cascades of Pasteurella multocida Toxin in Immune Evasion. Toxins, 2013, 5, 1664-1681.	1.5	19
20	Toxin-induced RhoA Activity Mediates CCL1-triggered Signal Transducers and Activators of Transcription Protein Signaling. Journal of Biological Chemistry, 2012, 287, 11183-11194.	1.6	14
21	Pasteurella multocida and Immune Cells. Current Topics in Microbiology and Immunology, 2012, 361, 53-72.	0.7	49
22	Meeting report: Signal transduction meets systems biology. Cell Communication and Signaling, 2012, 10, 11.	2.7	3
23	Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling. Cell Communication and Signaling, 2012, 10, 22.	2.7	24
24	Histone deacetylase inhibitors block IFNÎ ³ -induced STAT1 phosphorylation. Cellular Signalling, 2012, 24, 1453-1460.	1.7	47
25	<i>Pasteurella multocida</i> Toxin-Stimulated Osteoclast Differentiation Is B Cell Dependent. Infection and Immunity, 2011, 79, 220-228.	1.0	25
26	Signal transduction, receptors, mediators and genes: younger than ever - the 13th meeting of the Signal Transduction Society focused on aging and immunology. Cell Communication and Signaling, 2010, 8, 2.	2.7	1
27	Pasteurella multocida toxin is a potent activator of anti-apoptotic signalling pathways. Cellular Microbiology, 2010, 12, 1174-1185.	1.1	40
28	Pasteurella multocida Toxin-induced Pim-1 expression disrupts suppressor of cytokine signalling (SOCS)-1 activity. Cellular Microbiology, 2010, 12, 1732-1745.	1.1	18
29	The haematopoietic GTPase RhoH modulates IL3 signalling through regulation of STAT activity and IL3 receptor expression. Molecular Cancer, 2010, 9, 225.	7.9	19
30	The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Communication and Signaling, 2008, 6, 6.	2.7	29
31	Modulation of Host Cell Gene Expression through Activation of STAT Transcription Factors by Pasteurella multocida Toxin. Journal of Biological Chemistry, 2007, 282, 3050-3057.	1.6	36
32	Structural Requirements of the Extracellular to Transmembrane Domain Junction for Erythropoietin Receptor Function. Journal of Biological Chemistry, 2005, 280, 14844-14854.	1.6	40
33	Active and Inactive Orientations of the Transmembrane and Cytosolic Domains of the Erythropoietin Receptor Dimer. Molecular Cell, 2003, 12, 1239-1250.	4.5	193
34	The Erythropoietin Receptor Transmembrane Domain Mediates Complex Formation with Viral Anemic and Polycythemic gp55 Proteins. Journal of Biological Chemistry, 2003, 278, 43755-43763.	1.6	27
35	Self assembly of the transmembrane domain promotes signal transduction through the erythropoietin receptor. Current Biology, 2001, 11, 110-115.	1.8	100