Roberto Zamboni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8971232/publications.pdf

Version: 2024-02-01

		76326	114465
177	5,048	40	63
papers	citations	h-index	g-index
179	179	179	4835
179	1/9	1/9	4033
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. Nanomaterials, 2022, 12, 1406.	4.1	9
2	Eco-Sustainable Silk Fibroin/Pomegranate Peel Extract Film as an Innovative Green Material for Skin Repair. International Journal of Molecular Sciences, 2022, 23, 6805.	4.1	1
3	Keratin/Polylactic acid/graphene oxide composite nanofibers for drug delivery. International Journal of Pharmaceutics, 2022, 623, 121888.	5.2	9
4	Structural and functional properties of astrocytes on PCL based electrospun fibres. Materials Science and Engineering C, 2021, 118, 111363.	7.3	26
5	Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Advanced Healthcare Materials, 2021, 10, e2001268.	7.6	15
6	Polyaniline nano-needles into electrospun bio active fibres support in vitro astrocyte response. RSC Advances, 2021, 11, 11347-11355.	3 . 6	6
7	Graphene glial-interfaces: challenges and perspectives. Nanoscale, 2021, 13, 4390-4407.	5.6	18
8	Magnetic keratin/hydrotalcites sponges as potential scaffolds for tissue regeneration. Applied Clay Science, 2021, 207, 106090.	5.2	15
9	Effects of the Blending Ratio on the Design of Keratin/Poly(butylene succinate) Nanofibers for Drug Delivery Applications. Biomolecules, 2021, 11, 1194.	4.0	22
10	Cell Volume Regulation Mechanisms in Differentiated Astrocytes Cellular Physiology and Biochemistry, 2021, 55, 196-212.	1.6	19
11	Silk Fibroin and Pomegranate By-Products to Develop Sustainable Active Pad for Food Packaging Applications. Foods, 2021, 10, 2921.	4.3	10
12	Keratin/Hydrotalcites Hybrid Sponges as Promising Adsorbents for Cationic and Anionic Dyes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 68.	4.1	11
13	Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light. FASEB Journal, 2020, 34, 6539-6553.	0.5	25
14	A Glialâ€Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. Advanced Biology, 2020, 4, e1900264.	3.0	20
15	Extracellular Recording Systems: A Glialâ€Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes (Adv.) Tj ETQq1 1 0.7843	1 4. œBT /0	Oværlock 10 T
16	Effect of Chemically Engineered Au/Ag Nanorods on the Optical and Mechanical Properties of Keratin Based Films. Frontiers in Chemistry, 2020, 8, 158.	3.6	6
17	LRRC8A is essential for swellingâ€activated chloride current and for regulatory volume decrease in astrocytes. FASEB Journal, 2019, 33, 101-113.	0.5	37
18	Keratin Film as Natural and Ecoâ€Friendly Support for Organic Optoelectronic Devices. Advanced Sustainable Systems, 2019, 3, 1900080.	5. 3	19

#	Article	IF	CITATIONS
19	Polydopamine Nanoparticle-Coated Polysulfone Porous Granules as Adsorbents for Water Remediation. ACS Omega, 2019, 4, 4839-4847.	3.5	25
20	Nano-hybrid electrospun non-woven mats made of wool keratin and hydrotalcites as potential bio-active wound dressings. Nanoscale, 2019, 11, 6422-6430.	5.6	41
21	Silk Fibroin Based Technology for Industrial Biomanufacturing. , 2019, , 409-430.		5
22	Electrical Stimulation by an Organic Transistor Architecture Induces Calcium Signaling in Nonexcitable Brain Cells. Advanced Healthcare Materials, 2019, 8, e1801139.	7.6	16
23	Mild and Effective Polymerization of Dopamine on Keratin Films for Innovative Photoactivable and Biocompatible Coated Materials. Macromolecular Materials and Engineering, 2018, 303, 1700653.	3.6	10
24	Keratin-hydrotalcites hybrid films for drug delivery applications. European Polymer Journal, 2018, 105, 177-185.	5.4	50
25	Instructive proteins for tissue regeneration. , 2018, , 23-49.		6
26	Bioinspired scaffolds for bone and neural tissue and interface engineering. , 2018, , 51-74.		4
27	Silk fibroin film from goldenâ€yellow <scp><i>B</i></scp> <i>ombyx mori</i> is a biocomposite that contains lutein and promotes axonal growth of primary neurons. Biopolymers, 2016, 105, 287-299.	2.4	15
28	A self-assembled lysinated perylene diimide film as a multifunctional material for neural interfacing. Journal of Materials Chemistry B, 2016, 4, 2921-2932.	5.8	8
29	Soft confinement of water in graphene-oxide membranes. Carbon, 2016, 108, 199-203.	10.3	27
30	A Nanoscale Interface Promoting Molecular and Functional Differentiation of Neural Cells. Scientific Reports, 2016, 6, 31226.	3.3	27
31	Effect of different fabrication methods on the chemo-physical properties of silk fibroin films and on their interaction with neural cells. RSC Advances, 2016, 6, 9304-9314.	3.6	43
32	A Lysinated Thiopheneâ€Based Semiconductor as a Multifunctional Neural Bioorganic Interface. Advanced Healthcare Materials, 2015, 4, 1190-1202.	7.6	20
33	APTES mediated modular modification of regenerated silk fibroin in a water solution. RSC Advances, 2015, 5, 63401-63406.	3.6	14
34	Naturally functionalized silk as useful material for photonic applications. Composites Part B: Engineering, 2015, 71, 152-158.	12.0	16
35	SILK.IT project: Silk Italian Technology for industrial biomanufacturing. Composites Part B: Engineering, 2015, 68, 281-287.	12.0	11
36	Innovative Multifunctional Silk Fibroin and Hydrotalcite Nanocomposites: A Synergic Effect of the Components. Biomacromolecules, 2014, 15, 158-168.	5.4	35

3

#	Article	IF	CITATIONS
37	Integration of a silk fibroin based film as a luminescent down-shifting layer in ITO-free organic solar cells. RSC Advances, 2014, 4, 44815-44822.	3.6	31
38	Selective MW-assisted surface chemical tailoring of hydrotalcites for fluorescent and biocompatible nanocomposites. RSC Advances, 2014, 4, 11840.	3.6	14
39	A nanostructured conductive bio-composite of silk fibroin–single walled carbon nanotubes. Journal of Materials Chemistry B, 2014, 2, 1424.	5.8	40
40	Bio-doping of regenerated silk fibroin solution and films: a green route for biomanufacturing. RSC Advances, 2014, 4, 33687-33694.	3.6	21
41	Front Matter: Volume 9253. Proceedings of SPIE, 2014, , .	0.8	0
42	N-type perylene-based organic semiconductors for functional neural interfacing. Journal of Materials Chemistry B, 2013, 1, 3850.	5.8	28
43	A transparent organic transistor structure for bidirectional stimulation and recording of primaryÂneurons. Nature Materials, 2013, 12, 672-680.	27.5	145
44	Silk doped with a bio-modified dye as a viable platform for eco-friendly luminescent solar concentrators. RSC Advances, 2012, 2, 8610.	3.6	32
45	Low-threshold blue lasing from silk fibroin thin films. Applied Physics Letters, 2012, 101, 091110.	3.3	77
46	Biofunctional Silk/Neuron Interfaces. Advanced Functional Materials, 2012, 22, 1871-1884.	14.9	52
47	Biomaterials: Biofunctional Silk/Neuron Interfaces (Adv. Funct. Mater. 9/2012). Advanced Functional Materials, 2012, 22, 1870-1870.	14.9	0
48	Silk Fibroin as Platform for Neural Cells and Hybrid Optoelectronics. Journal of Biobased Materials and Bioenergy, 2012, 6, 508-514.	0.3	2
49	Integration of silk protein in organic and light-emitting transistors. Organic Electronics, 2011, 12, 1146-1151.	2.6	137
50	A silk platform that enables electrophysiology and targeted drug delivery in brain astroglial cells. Biomaterials, 2010, 31, 7883-7891.	11.4	59
51	Efficient second harmonic generation from thin films of V-shaped benzo[b]thiophene based molecules. Optics Express, 2009, 17, 2557.	3.4	12
52	Very low amplified spontaneous emission threshold from a molecular host-guest energy transfer system and electroluminescence from light-emitting diode structure. Proceedings of SPIE, 2009, , .	0.8	0
53	Laboratory simulation of ultraviolet irradiation from the Sun on amino acids. III. irradiation of glycine-tyrosine. International Journal of Astrobiology, 2009, 8, 63-68.	1.6	2
54	Characterization of indium tin oxide surfaces after KOH and HCl treatments. Organic Electronics, 2008, 9, 253-261.	2.6	22

#	Article	IF	Citations
55	OLET architectures for electrically-pumped organic lasers. Proceedings of SPIE, 2008, , .	0.8	1
56	Laboratory simulation of UV irradiation from the Sun on amino acids. I: irradiation of tyrosine. International Journal of Astrobiology, 2007, 6, 123-129.	1.6	7
57	Laboratory simulation of UV irradiation from the Sun on amino acids. II. Irradiation of phenylalanine and tryptophan. International Journal of Astrobiology, 2007, 6, 281-289.	1.6	9
58	Degradation of organic light-emitting diodes under different environment at high drive conditions. Organic Electronics, 2007, 8, 37-43.	2.6	78
59	Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer. Applied Physics Letters, 2006, 88, 163511.	3.3	33
60	J-Aggregation in $\hat{l}\pm$ -Sexithiophene Submonolayer Films on Silicon Dioxide. Journal of the American Chemical Society, 2006, 128, 4277-4281.	13.7	99
61	Conjugated Polymers Oriented Organic Thin Films for Nonlinear Optics. Molecular Crystals and Liquid Crystals, 2006, 446, 23-45.	0.9	9
62	Light extraction and customized optical distribution from plastic micro-optics integrated OLEDs. , 2006, , .		0
63	Degradation of organic light-emitting diode. , 2006, 6192, 442.		0
64	Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices. Journal of Physics Condensed Matter, 2006, 18, S2139-S2147.	1.8	18
65	Ambipolar organic light-emitting transistors employing heterojunctions of n-type and p-type materials as the active layer. Journal of Physics Condensed Matter, 2006, 18, S2127-S2138.	1.8	22
66	Efficient light extraction and beam shaping from flexible, optically integrated organic light-emitting diodes. Applied Physics Letters, 2006, 88, 153514.	3.3	32
67	Oriented conjugated polymer thin films for all optical switching applications. , 2005, , .		0
68	Morphology and Field-Effect-Transistor Mobility in Tetracene Thin Films. Advanced Functional Materials, 2005, 15, 375-380.	14.9	111
69	Mechanism of dark-spot degradation of organic light-emitting devices. Applied Physics Letters, 2005, 86, 041105.	3.3	53
70	Molecular orientation in ultrathin films of $\hat{l}\pm$ -sexithiophene on silicon dioxide revealed by spatially resolved confocal spectroscopy. Synthetic Metals, 2005, 155, 287-290.	3.9	6
71	Tetracene light-emitting transistors on flexible plastic substrates. Applied Physics Letters, 2005, 86, 141106.	3.3	85
72	Supramolecular organization in ultra-thin films of \hat{l}_{\pm} -sexithiophene on silicon dioxide. Nature Materials, 2004, 4, 81-85.	27.5	205

#	Article	IF	CITATIONS
73	Blue Luminescence of Facial Tris(quinolin-8-olato)aluminum(III) in Solution, Crystals, and Thin Films. Advanced Materials, 2004, 16, 861-864.	21.0	87
74	Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism. Synthetic Metals, 2004, 146, 329-334.	3.9	104
75	Flexible microstructured organic light sources for automotive applications. , 2004, , .		1
76	Photonic engineering of nonlinear-optical properties of hybrid materials for efficient ultrafast optical switching (PHOENIX)., 2004, 5464, 39.		0
77	Nanoscale femtosecond spectroscopy for material science and nanotechnology. Synthetic Metals, 2003, 139, 687-690.	3.9	13
78	Optical coupling of flexible microstructured organic light sources for automotive applications. Synthetic Metals, 2003, 139, 913-916.	3.9	6
79	Organic light emitting diodes with spin polarized electrodes. Journal of Applied Physics, 2003, 93, 7682-7683.	2.5	49
80	The intramolecular vibrational dynamics of mer-tris(8-hydroxyquinoline)aluminium(III). Synthetic Metals, 2002, 127, 247-250.	3.9	5
81	The nature of emitting states in electroluminescence of polymeric films doped with anthracene and anthracene-based supramolecules. Chemical Physics, 2002, 277, 387-396.	1.9	28
82	Time-resolved stimulated emission in an α-sexithienyl thin film. Synthetic Metals, 2001, 116, 49-51.	3.9	0
83	Excimer-like electroluminescence from thin films of switchable supermolecular anthracene-based rotaxanes. Synthetic Metals, 2001, 122, 27-29.	3.9	7
84	Photophysical properties of thin films and solid phase of switchable supermolecular anthracene-based rotaxanes. Synthetic Metals, 2001, 122, 63-65.	3.9	4
85	Conformational Self-Recognition as the Origin of Dewetting in Bistable Molecular Surfaces. Journal of Physical Chemistry B, 2001, 105, 10826-10830.	2.6	57
86	Solid-state optical properties of the methyl-exopyridine–anthracene rotaxane. Chemical Physics, 2001, 269, 381-388.	1.9	0
87	Optical and electroemission properties of thin films of supermolecular anthracene-based rotaxanes. Applied Surface Science, 2001, 175-176, 369-373.	6.1	7
88	Observation of Phonon Resonances in the Optical Nonlinearity in an ?-Sexithienyl Thin Film. Physica Status Solidi (B): Basic Research, 2000, 221, 561-565.	1.5	0
89	Femtosecond differential transmission spectroscopy of α-sexithienyl thin film. Journal of Luminescence, 2000, 87-89, 736-738.	3.1	3
90	Femtosecond Differential Transmission Spectroscopy of \hat{l}_{\pm} -Sexithienyl Thin Film at Low Temperature. Journal of Physical Chemistry B, 2000, 104, 6536-6540.	2.6	4

#	Article	IF	Citations
91	Optical properties and the photoluminescence quantum yield of organic molecular materials. Journal of Optics, 2000, 2, 577-583.	1.5	11
92	Size of Electron-Hole Pairs inπ-Conjugated Systems. Physical Review Letters, 1999, 83, 1443-1446.	7.8	70
93	Micro-Raman and Resistance Measurements of Epitaxial La0.7Sr0.3MnO3 Films. Physica Status Solidi (B): Basic Research, 1999, 215, 625-629.	1.5	26
94	Photoinduced charge transfer in complex architectured films of c60 and donor-like molecules. Synthetic Metals, 1999, 103, 2392-2394.	3.9	17
95	STM investigation of flexible supramolecules: Benzylic amide [2] catenanes. Synthetic Metals, 1999, 102, 1466-1467.	3.9	14
96	Raman and far infrared characterization of the simplest benzylic amide [2] catenane. Synthetic Metals, 1999, 102, 1556-1557.	3.9	2
97	Femtosecond Transient Absorption Spectroscopy in α-sexithienyl thin films. Synthetic Metals, 1999, 101, 555-556.	3.9	1
98	The effect of intermolecular interaction on the electronic properties of quaterylene. Synthetic Metals, 1999, 102, 1589-1590.	3.9	0
99	In-situ characterisation of the oxygen induced changes in a UHV grown organic light-emitting diode. Synthetic Metals, 1999, 102, 1095-1096.	3.9	11
100	Anisotropic Ordered Planar Growth of α-Sexithienyl Thin Films. Journal of Physical Chemistry B, 1999, 103, 7788-7795.	2.6	62
101	The Vibrational Signature of the Aluminum/Polythiophene Interface. Advanced Materials, 1998, 10, 319-324.	21.0	25
102	Disorder influenced optical properties of \hat{l}_{\pm} -sexithiophene single crystals and thin evaporated films. Chemical Physics, 1998, 227, 49-56.	1.9	54
103	High-Frequency Vibrations of the Simplest Benzylic Amide [2]Catenane. Journal of Physical Chemistry A, 1998, 102, 5782-5788.	2.5	19
104	The Origin of Photoluminescence from \hat{l}_{\pm} -Sexithienyl Thin Films. Journal of Physical Chemistry B, 1998, 102, 7563-7567.	2.6	31
105	Organic heteromultilayers: electronic structure of sexithienyl/ thin films grown in ultra-high vacuum. Journal of Optics, 1998, 7, 151-157.	0.5	1
106	Scaling Behavior of Anisotropic Organic Thin Films Grown in High Vacuum. Physical Review Letters, 1997, 78, 2389-2392.	7.8	158
107	Electrical and luminescent properties of double-layer oligomeric/ polymeric light-emitting diodes. Synthetic Metals, 1996, 76, 145-148.	3.9	15
108	Ultra-high-vacuum single-layer formation of \hat{l}_{\pm} -hexathienyl on the (1 \tilde{A} —2) Au(110) surface. Synthetic Metals, 1996, 76, 173-176.	3.9	7

#	Article	IF	CITATIONS
109	Investigation of the low energy optic excitations in crystalline C60. Synthetic Metals, 1996, 77, 177-179.	3.9	3
110	Nonlinear optical properties of fullerenes. Synthetic Metals, 1996, 77, 257-263.	3.9	37
111	Hydrogen and humidity sensing properties of C60 thin films. Synthetic Metals, 1996, 77, 273-275.	3.9	30
112	Morphology and roughness of high-vacuum sublimed oligomer thin films. Thin Solid Films, 1996, 284-285, 439-443.	1.8	18
113	The intramolecular vibrations of prototypical polythiophenes. Journal of Chemical Physics, 1996, 104, 9704-9718.	3.0	44
114	Validity of the essential states model in fullerenes. , 1995, , .		1
115	Location of charge transfer states in \hat{l}_{\pm} -sexithienyl determined by the electroabsorption technique. Chemical Physics Letters, 1995, 232, 401-406.	2.6	95
116	Absorption at the dipole-forbidden optical gap of crystalline C60. Chemical Physics Letters, 1995, 236, 135-140.	2.6	33
117	Observation of interface excitons and energy transfer processes in an oligo-thiophene multi-layer structure. Chemical Physics Letters, 1995, 242, 207-211.	2.6	17
118	Location of the lowest exciton in C60 single crystal by two-photon excitation spectroscopy. Chemical Physics Letters, 1995, 245, 107-112.	2.6	28
119	Three-Chamber UHV System for Organic Molecular Beam Epitaxy. Vakuum in Forschung Und Praxis, 1995, 7, 281-285.	0.1	0
120	Polarised Electroluminescence from Vacuum-Grown Organic Light-Emitting Diodes. Europhysics Letters, 1995, 32, 523-528.	2.0	59
121	Growth of conjugated oligomer thin films studied by atomic-force microscopy. Physical Review B, 1995, 52, 14868-14877.	3.2	141
122	Ultrafast Dynamics of Photoexcited States in C ₆₀ . Europhysics Letters, 1994, 25, 403-408.	2.0	26
123	Dispersion of Third-Harmonic-Generation Optical Susceptibility in C70Thin Films. Physical Review Letters, 1994, 73, 1617-1620.	7.8	29
124	Wave-dispersed third-order nonlinear optical properties of C60 thin films. Chemical Physics Letters, 1994, 217, 418-422.	2.6	82
125	Raman scattering and lattice dynamics of fullerides MxC60. Synthetic Metals, 1994, 64, 341-352.	3.9	8
126	Energy-dependent branching between fluorescence and singlet exciton dissociation in sexithienyl thin films. Chemical Physics Letters, 1993, 216, 418-423.	2.6	34

#	Article	IF	CITATIONS
127	Electrical characteristics of field-effect transistors formed with ordered α-sexithienyl. Synthetic Metals, 1993, 54, 447-452.	3.9	131
128	Low energy neutral and charged excitations in \hat{l}_{\pm} -sexithienyl: a polythiophene model compound. Synthetic Metals, 1993, 57, 4991-4996.	3.9	1
129	Light-induced oxygen incision of C60. Journal of the Chemical Society Chemical Communications, 1993, , 220.	2.0	67
130	Linear and nonlinear spectroscopy of highly oriented thin films of \hat{l}_{\pm} -sexithienyl: a model for polythiophene. Synthetic Metals, 1993, 57, 4714-4721.	3.9	8
131	Electronic structure of polydithieno[3,4-b;3',4'-d]thiophene, a small bandgap conjugated polymer. Synthetic Metals, 1993, 57, 4399-4404.	3.9	5
132	Assignment of fundamental vibrations and estimation of electron-molecular vibration coupling constants for bis(ethylenedioxy)tetrathiafulvalene (BEDO). Synthetic Metals, 1993, 56, 2364-2371.	3.9	28
133	Oxygen effect on photoluminescence of fullerite C60 thin films. Synthetic Metals, 1993, 56, 3119-3124.	3.9	14
134	Nonlinear optical properties of sublimed C60 thin films. Synthetic Metals, 1993, 54, 21-32.	3.9	25
135	Raman scattering in ferromagnetic TDAE-C60 compared to TDAE-C70. Synthetic Metals, 1993, 56, 3050-3056.	3.9	18
136	The chemical and electronic structure of the interface between aluminum and conjugated polymers or molecules. Synthetic Metals, 1993, 55, 212-217.	3.9	64
137	Electronic levels ordering in α-sexithienyl. Synthetic Metals, 1993, 54, 57-66.	3.9	42
138	The chemical and electronic structure of the interface between aluminum and polythiophene semiconductors. Journal of Chemical Physics, 1993, 99, 664-672.	3.0	162
139	Location of the low-energy1Agstate in a polythiophene oligomer by two-photon absorption spectroscopy: α-sexithienyl. Physical Review Letters, 1992, 68, 919-922.	7.8	110
140	Photoexcitations and nonlinear optical properties in thiophene-based conjugated systems. , 1992, , .		0
141	Study of Photogenerated Nonlinear Excitations in a Polythiophene Model Compound: α-Sexithienyl. Molecular Crystals and Liquid Crystals, 1992, 218, 113-116.	0.3	5
142	Influence of oxygen and excitation wavelength on C60 film fluorescence. Journal of Applied Spectroscopy, 1992, 57, 882-885.	0.7	0
143	Low energy electronic excitations and fano resonance in K doped C60 from Raman scattering excited at 1.16 eV. Solid State Communications, 1992, 81, 257-260.	1.9	22
144	CDW suppression and photoinduced gap states in BaBiO3. Solid State Communications, 1992, 81, 419-423.	1.9	5

#	Article	IF	CITATIONS
145	Direct evidence of polaron resonance enhancement of cubic susceptability in polythiophene. Synthetic Metals, 1991, 43, 3197-3200.	3.9	4
146	Photoinduced absorption in a series of thiophene based conjugated polymers. Synthetic Metals, 1991, 41, 579-582.	3.9	8
147	Resonance Raman study of a low energy gap conjugated polymer: Polydithieno(3,4-b;3′,4′-d)thiophene. Synthetic Metals, 1991, 41, 1319-1322.	3.9	3
148	Electronic and infrared properties of the \hat{l}_{\pm} -sexithienyl single crystal. Synthetic Metals, 1991, 42, 2359-2362.	3.9	32
149	(FT-NIR) Raman scattering in pressed pellets of BEDT-TTF based organic metals. Synthetic Metals, 1991, 42, 2241-2244.	3.9	7
150	Third order nonlinear optical response in a thiophene substituted conjugated polyene: DTDMP. Synthetic Metals, 1991, 43, 3177-3180.	3.9	2
151	Highly conducting complexes based on Au (III)-Bis (1,3-dithio-2-thione-4,5-dithiolate). Synthetic Metals, 1991, 42, 2355-2358.	3.9	10
152	Optical studies of BaBiO3: A 3D charge density wave (CDW) insulator. Synthetic Metals, 1991, 43, 3977-3980.	3.9	3
153	Evidence for electron-phonon coupling in vibrational spectrum of Bi2Sr2CaCu2O8 single crystal. Solid State Communications, 1991, 78, 979-982.	1.9	4
154	Infrared and Raman spectra of cytosine and cytidinium salts. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 863-874.	0.1	10
155	IR photoinduced absorption and FT-Raman of YBa2Cu318O6+x: Further evidence of the role of the apex oxygen. Physica C: Superconductivity and Its Applications, 1991, 185-189, 963-964.	1.2	7
156	Evidence of charge localization from photoinduced infrared absorption in BaBiO3. Bulletin of Materials Science, 1991, 14, 533-538.	1.7	0
157	Resonant Raman scattering on single crystals of (BEDT-TTF)2Cu(NCS)2. Solid State Communications, 1990, 73, 41-44.	1.9	17
158	Frequency variation of cubic susceptibility in the new conjugated polymers PTT and PDTB. Synthetic Metals, 1990, 37, 223-229.	3.9	25
159	FT-Raman scattering at 1.16 eV in the YBa 2 Cu 3 O 7â^'x superconducting system. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1103-1104.	1.2	1
160	Transient photomodulation spectroscopy of YBa 2 Cu 3 O 6+x and La 2 CuO 4. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1109-1110.	1.2	10
161	Evidence of strong electron-phonon coupling from infrared excited Raman scattering in the YBa2Cu3O7-y superconducting system. Solid State Communications, 1989, 70, 813-816.	1.9	54
162	Evolution of the IR properties upon the oxygen vacancy ordering in YBa2Cu3O7 \hat{a}^{y} (0 < y < 1). Synthetic Metals, 1989, 29, 591-596.	3.9	2

#	Article	IF	Citations
163	Synthesis and properties of polydithienobenzene. Synthetic Metals, 1989, 28, 521-526.	3.9	9
164	Preparation and properties of a new conducting polyheterocycle: Polydithieno [3, 4-b : 3′, 4′-d] thiophene (PDTT). Synthetic Metals, 1989, 28, 527-532.	3.9	19
165	Electronic and phonon photoinduced I.R. absorptions in the YBa2Cu3O7â°'y high Tc superconducting system. Synthetic Metals, 1989, 29, 585-590.	3.9	6
166	Molecular structure and transport properties in thiophene-based polyheterocycles. Synthetic Metals, 1989, 28, 515-520.	3.9	11
167	Optical properties of a low energy gap conducting polymer: Polydithieno[3,4-b:′,4′-d]thiophene. Synthetic Metals, 1989, 28, 507-514.	3.9	47
168	Nonlinear-optical response in polythiophene films using four-wave mixing techniques. Optics Letters, 1989, 14, 1321.	3.3	63
169	FT-IR Absorption Spectra of Polycrystalline Pressed Sample soft he Organic Metals and Superconductorsa α-β-(BEDT-TTF) ₂ 1 ₃ and (BEDT-TTF) ₂ Cu(NCS) ₂ . Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1989, 44, 295-299.	1.5	21
170	Dependence of ir absorption in YBa2Cu3O7â^'y on the oxygen content. Physica C: Superconductivity and Its Applications, 1988, 153-155, 645-646.	1.2	13
171	IR photoinduced absorption of the semiconducting modification of YBaCuO. Physica C: Superconductivity and Its Applications, 1988, 153-155, 647-648.	1.2	2
172	Infrared photoinduced absorption in the YBa2Cu3O7â°'y high Tc superconducting system. Solid State Communications, 1988, 66, 487-490.	1.9	103
173	Poly(dithieno[3,4-b:3′,4′-d]thiophene): a new transparent conducting polymer. Journal of the Chemical Society Chemical Communications, 1988, , 246-247.	2.0	41
174	Optical, electrical and structural comparative study of polycondensed thiophene based polymers. Synthetic Metals, 1987, 18, 177-182.	3.9	54
175	Bulk phonon modes of YBa2Cu3O7 from infrared absorption at 300-30K. Solid State Communications, 1987, 64, 911-913.	1.9	16
176	Optical, electrical and electrochemical characterization of electrosynthesized polythieno(3,2-b)thiophene. Synthetic Metals, 1986, 13, 325-328.	3.9	45
177	Poly[1,4-di-(2-thienyl)benzene]: a new conducting polymer. Journal of the Chemical Society Chemical Communications, 1986, , 1473.	2.0	24