## Levi A Garraway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8971154/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 2015, 161, 1215-1228.                                                                                        | 28.9 | 2,660     |
| 2  | Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 2014, 505, 495-501.                                                                         | 27.8 | 2,586     |
| 3  | Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome<br>Medicine, 2017, 9, 34.                                                   | 8.2  | 2,480     |
| 4  | Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.<br>Science, 2016, 351, 1463-1469.                                            | 12.6 | 2,445     |
| 5  | Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015, 350, 207-211.                                                                        | 12.6 | 2,275     |
| 6  | Defining a Cancer Dependency Map. Cell, 2017, 170, 564-576.e16.                                                                                                               | 28.9 | 1,794     |
| 7  | Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 2005, 436, 117-122.                                        | 27.8 | 1,329     |
| 8  | Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nature Medicine, 2016, 22, 298-305.                                                        | 30.7 | 1,193     |
| 9  | Lessons from the Cancer Genome. Cell, 2013, 153, 17-37.                                                                                                                       | 28.9 | 1,133     |
| 10 | A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell, 2018, 175, 984-997.e24.                                                          | 28.9 | 892       |
| 11 | Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.                              | 9.4  | 821       |
| 12 | Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Reports, 2016, 15, 857-865.                                                                       | 6.4  | 671       |
| 13 | The long tail of oncogenic drivers in prostate cancer. Nature Genetics, 2018, 50, 645-651.                                                                                    | 21.4 | 601       |
| 14 | Quantitative Proteomics of the Cancer Cell Line Encyclopedia. Cell, 2020, 180, 387-402.e16.                                                                                   | 28.9 | 596       |
| 15 | Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nature Medicine, 2014, 20, 682-688. | 30.7 | 508       |
| 16 | Somatic <i>ERCC2</i> Mutations Correlate with Cisplatin Sensitivity in Muscle-Invasive Urothelial<br>Carcinoma. Cancer Discovery, 2014, 4, 1140-1153.                         | 9.4  | 506       |
| 17 | <i>Fusobacterium nucleatum</i> and T Cells in Colorectal Carcinoma. JAMA Oncology, 2015, 1, 653.                                                                              | 7.1  | 498       |
| 18 | Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discovery, 2016, 6, 914-929.                                                   | 9.4  | 485       |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High-Throughput Detection of Actionable Genomic Alterations in Clinical Tumor Samples by Targeted,<br>Massively Parallel Sequencing. Cancer Discovery, 2012, 2, 82-93.                                                      | 9.4  | 484       |
| 20 | A Melanoma Cell State Distinction Influences Sensitivity to MAPK Pathway Inhibitors. Cancer Discovery, 2014, 4, 816-827.                                                                                                    | 9.4  | 448       |
| 21 | Circumventing Cancer Drug Resistance in the Era of Personalized Medicine. Cancer Discovery, 2012, 2, 214-226.                                                                                                               | 9.4  | 419       |
| 22 | Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell Therapy. Cell<br>Metabolism, 2018, 27, 977-987.e4.                                                                                            | 16.2 | 398       |
| 23 | <i>MTAP</i> deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science, 2016, 351, 1214-1218.                                                                                    | 12.6 | 396       |
| 24 | <i>Ex Vivo</i> Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discovery, 2018, 8, 196-215.                                                                                                            | 9.4  | 392       |
| 25 | RNF43 is frequently mutated in colorectal and endometrial cancers. Nature Genetics, 2014, 46, 1264-1266.                                                                                                                    | 21.4 | 388       |
| 26 | Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5564-73.           | 7.1  | 355       |
| 27 | Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI<br>Insight, 2016, 1, e87062.                                                                                               | 5.0  | 340       |
| 28 | ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nature Medicine, 2014, 20, 251-254.                                                                                                                            | 30.7 | 336       |
| 29 | Locally Disordered Methylation Forms the Basis of Intratumor Methylome Variation in Chronic<br>Lymphocytic Leukemia. Cancer Cell, 2014, 26, 813-825.                                                                        | 16.8 | 323       |
| 30 | Lineage dependency and lineage-survival oncogenes in human cancer. Nature Reviews Cancer, 2006, 6,<br>593-602.                                                                                                              | 28.4 | 316       |
| 31 | Precision Oncology: An Overview. Journal of Clinical Oncology, 2013, 31, 1803-1805.                                                                                                                                         | 1.6  | 304       |
| 32 | Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion.<br>Nature Genetics, 2011, 43, 964-968.                                                                                         | 21.4 | 270       |
| 33 | Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. European Journal of Cancer, 2015, 51, 2792-2799. | 2.8  | 269       |
| 34 | Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nature<br>Biotechnology, 2014, 32, 644-652.                                                                                         | 17.5 | 257       |
| 35 | Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine.<br>Cancer Discovery, 2018, 8, 1096-1111.                                                                                     | 9.4  | 256       |
| 36 | Prostate cancer–associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nature Medicine, 2017, 23, 1063-1071.                                                                          | 30.7 | 240       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell, 2016, 29, 846-858.                                                                                                                         | 16.8 | 228       |
| 38 | Adaptive resistance of melanoma cells to <scp>RAF</scp> inhibition via reversible induction of a slowly dividing deâ€differentiated state. Molecular Systems Biology, 2017, 13, 905.                                         | 7.2  | 202       |
| 39 | The Genomic Landscape of Intrinsic and Acquired Resistance to Cyclin-Dependent Kinase 4/6 Inhibitors<br>in Patients with Hormone Receptor–Positive Metastatic Breast Cancer. Cancer Discovery, 2020, 10,<br>1174-1193.       | 9.4  | 176       |
| 40 | gkmSVM: an R package for gapped-kmer SVM. Bioinformatics, 2016, 32, 2205-2207.                                                                                                                                               | 4.1  | 155       |
| 41 | Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncology, The, 2017, 18, e653-e706.                                                                                                       | 10.7 | 153       |
| 42 | The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine.<br>Genome Medicine, 2016, 8, 79.                                                                                         | 8.2  | 151       |
| 43 | A Functional Landscape of Resistance to ALK Inhibition in Lung Cancer. Cancer Cell, 2015, 27, 397-408.                                                                                                                       | 16.8 | 150       |
| 44 | IFNÎ <sup>3</sup> -Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell, 2017, 170,<br>127-141.e15.                                                                                           | 28.9 | 140       |
| 45 | Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nature<br>Communications, 2019, 10, 4346.                                                                                                  | 12.8 | 139       |
| 46 | Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of<br>Genomic Medicine. American Journal of Human Genetics, 2016, 98, 1051-1066.                                                   | 6.2  | 137       |
| 47 | Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations. Blood, 2016, 128, 1093-1100.                                                                                | 1.4  | 126       |
| 48 | Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nature<br>Biotechnology, 2014, 32, 71-75.                                                                                        | 17.5 | 120       |
| 49 | Phenotypic Characterization of a Comprehensive Set of MAPK1 /ERK2 Missense Mutants. Cell Reports, 2016, 17, 1171-1183.                                                                                                       | 6.4  | 119       |
| 50 | Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade. Cell, 2018, 173, 624-633.e8.                                                                                                           | 28.9 | 113       |
| 51 | Oncologists' and cancer patients' views on whole-exome sequencing and incidental findings: results<br>from the CanSeq study. Genetics in Medicine, 2016, 18, 1011-1019.                                                      | 2.4  | 108       |
| 52 | Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer. Cancer Discovery, 2016, 6, 1134-1147.                                                                                              | 9.4  | 106       |
| 53 | Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5708-5713. | 7.1  | 105       |
| 54 | Intermediate basal cells of the prostate: In vitro and in vivo characterization. Prostate, 2003, 55, 206-218.                                                                                                                | 2.3  | 97        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Exome Sequencing of African-American Prostate Cancer Reveals Loss-of-Function <i>ERF</i> Mutations. Cancer Discovery, 2017, 7, 973-983.                                                                                              | 9.4 | 94        |
| 56 | Inherited DNA-Repair Defects in Colorectal Cancer. American Journal of Human Genetics, 2018, 102, 401-414.                                                                                                                           | 6.2 | 89        |
| 57 | Binding of TMPRSS2-ERG to BAF Chromatin Remodeling Complexes Mediates Prostate Oncogenesis.<br>Molecular Cell, 2018, 71, 554-566.e7.                                                                                                 | 9.7 | 77        |
| 58 | MAPK Pathway Suppression Unmasks Latent DNA Repair Defects and Confers a Chemical Synthetic Vulnerability in <i>BRAF-, NRAS</i> -, and <i>NF1</i> -Mutant Melanomas. Cancer Discovery, 2019, 9, 526-545.                             | 9.4 | 73        |
| 59 | Genotyping Cancer-Associated Genes in Chordoma Identifies Mutations in Oncogenes and Areas of<br>Chromosomal Loss Involving CDKN2A, PTEN, and SMARCB1. PLoS ONE, 2014, 9, e101283.                                                   | 2.5 | 72        |
| 60 | Prospective Enterprise-Level Molecular Genotyping of a Cohort of Cancer Patients. Journal of Molecular Diagnostics, 2014, 16, 660-672.                                                                                               | 2.8 | 70        |
| 61 | Rapid Intraoperative Molecular Characterization of Glioma. JAMA Oncology, 2015, 1, 662.                                                                                                                                              | 7.1 | 68        |
| 62 | Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies.<br>DMM Disease Models and Mechanisms, 2016, 9, 811-20.                                                                        | 2.4 | 61        |
| 63 | Long-term Benefit of PD-L1 Blockade in Lung Cancer Associated with <i>JAK3</i> Activation. Cancer<br>Immunology Research, 2015, 3, 855-863.                                                                                          | 3.4 | 60        |
| 64 | Combined Pan-RAF and MEK Inhibition Overcomes Multiple Resistance Mechanisms to Selective RAF<br>Inhibitors. Molecular Cancer Therapeutics, 2015, 14, 2700-2711.                                                                     | 4.1 | 59        |
| 65 | Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in<br>NRAS-mutant melanoma. Proceedings of the National Academy of Sciences of the United States of<br>America, 2016, 113, E1296-305.      | 7.1 | 59        |
| 66 | A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro-Oncology, 2017, 19, now261.                                                                                  | 1.2 | 55        |
| 67 | Genetic modifiers of EGFR dependence in non-small cell lung cancer. Proceedings of the National<br>Academy of Sciences of the United States of America, 2014, 111, 18661-18666.                                                      | 7.1 | 46        |
| 68 | PLZF, a Tumor Suppressor Genetically Lost in Metastatic Castration-Resistant Prostate Cancer, Is a<br>Mediator of Resistance to Androgen Deprivation Therapy. Cancer Research, 2015, 75, 1944-1948.                                  | 0.9 | 46        |
| 69 | Assigning clinical meaning to somatic and germ-line whole-exome sequencing data in a prospective cancer precision medicine study. Genetics in Medicine, 2017, 19, 787-795.                                                           | 2.4 | 46        |
| 70 | Genomic Correlate of Exceptional Erlotinib Response in Head and Neck Squamous Cell Carcinoma.<br>JAMA Oncology, 2015, 1, 238.                                                                                                        | 7.1 | 44        |
| 71 | Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States.<br>Cell Systems, 2017, 5, 105-118.e9.                                                                                                | 6.2 | 40        |
| 72 | Whole-Exome Sequencing in Two Extreme Phenotypes of Response to VEGF-Targeted Therapies in Patients With Metastatic Clear Cell Renal Cell Carcinoma. Journal of the National Comprehensive Cancer Network: INCCN. 2016. 14, 820-824. | 4.9 | 36        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Systematic genomic and translational efficiency studies of uveal melanoma. PLoS ONE, 2017, 12, e0178189.                                                                                                                                     | 2.5  | 34        |
| 74 | From Integrated Genomics to Tumor Lineage Dependency. Cancer Research, 2006, 66, 2506-2508.                                                                                                                                                  | 0.9  | 27        |
| 75 | Mechanisms of resistance (MoR) to DNA damaging therapy (tx) in BRCA1/2-deficient (d) metastatic breast cancer (MBC) Journal of Clinical Oncology, 2016, 34, 542-542.                                                                         | 1.6  | 27        |
| 76 | An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell, 2022, 40, 524-544.e5.                                                                                | 16.8 | 23        |
| 77 | Whole-Genome Sequencing and Cancer Therapy: Is Too Much Ever Enough?: Figure 1 Cancer Discovery, 2012, 2, 766-768.                                                                                                                           | 9.4  | 19        |
| 78 | Genetic Effect of Chemotherapy Exposure in Children of Testicular Cancer Survivors. Clinical Cancer<br>Research, 2016, 22, 2183-2189.                                                                                                        | 7.0  | 15        |
| 79 | The fuzzy world of precision medicine: deliberations of a precision medicine tumor board.<br>Personalized Medicine, 2017, 14, 37-50.                                                                                                         | 1.5  | 15        |
| 80 | Mechanisms of Resistance to Mitogen-Activated Protein Kinase Pathway Inhibition in BRAF-Mutant<br>Melanoma. American Society of Clinical Oncology Educational Book / ASCO American Society of<br>Clinical Oncology Meeting, 2012, , 680-684. | 3.8  | 7         |
| 81 | Increased Local Disorder of DNA Methylation Forms the Basis of High Intra-Leukemic Epigenetic<br>Heterogeneity and Enhances CLL Evolution. Blood, 2013, 122, 596-596.                                                                        | 1.4  | 4         |
| 82 | On or Off Target: Mutations, Models, and Predictions. Science Translational Medicine, 2010, 2, 35ps28.                                                                                                                                       | 12.4 | 3         |
| 83 | Inclusion of the ASH1 gene that governs the neuroendocrine differentiation of lung epithelium as an additional prototypic 'lineage-survival oncogene'. Nature Reviews Cancer, 2007, 7, 68-68.                                                | 28.4 | Ο         |