
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8971132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermally stable mesoporous pH dyes encapsulated titania nanocomposites for opto-chemical sensing. Materials Research Bulletin, 2022, 146, 111605.	5.2	7
2	Multi-organic dyes-immobilised zincite decorated silica-titania nanocomposite: A study on atomic site structural changes for pH sensor activity progression. Materials Research Bulletin, 2022, 149, 111730.	5.2	2
3	Self-assembled phenolphthalein functionalized zincite doped silica-anatase nanocomposite as fast responsive optical pH sensor. Optical Materials, 2022, 127, 112285.	3.6	3
4	Hierarchically grown nanostructure for suppressing leaching in fiber optic chemical sensing. Materials Chemistry and Physics, 2022, 286, 126194.	4.0	0
5	A promising nonlinear optics and optical limiting attributes in single organic coumarin-based compounds. Current Applied Physics, 2022, 39, 147-153.	2.4	2
6	Thermally and optically functionalized Anatase nano-cavities based fiber optic pH sensor. Materials Research Bulletin, 2021, 133, 111017.	5.2	7
7	Fast responsive anatase nanoparticles coated fiber optic pH sensor. Journal of Alloys and Compounds, 2021, 850, 156246.	5.5	12
8	Structural and antimicrobial response of chitosan capped gold nanostructures employing two different synthetic routes. Optical Materials, 2021, 112, 110741.	3.6	4
9	Thermally stable ZnO doped SiO2–TiO2 nanocomposite based Opto-chemical sensor. Materials Chemistry and Physics, 2021, 267, 124687.	4.0	5
10	Effect of pH on phenolphthalein immobilized gold nanoparticles/nanostructures for pH sensing evaluations: sol–gel method. Journal of Sol-Gel Science and Technology, 2021, 100, 192-204.	2.4	6
11	Thermally stable and fast responsive mesoporous cresol red functionalized silica and titania nanomatrices: fiber optic pH sensors. Journal of Sol-Gel Science and Technology, 2021, 99, 497-511.	2.4	5
12	Mesoporous nanostructures-based fiber optic pH sensors: Synthesis, structure-tailoring, physiochemical and sensing stimuli. Materials Research Bulletin, 2021, 140, 111332.	5.2	3
13	Synthesis and characterization of bromophenol blue encapsulated silica and silica-titania nanocomposites for detection of volatile organic vapors. Physica B: Condensed Matter, 2021, 614, 413026.	2.7	4
14	Optically functionalized hierarchical hematite assembled silica-titania nanocomposites for hydrocarbon detection: Fiber optic chemical sensor. Microporous and Mesoporous Materials, 2021, 326, 111398.	4.4	4
15	Mesoporous zinc oxide supported silica-titania nanocomposite: Structural, optical, and photocatalytic activity. Journal of Alloys and Compounds, 2021, 881, 160582.	5.5	8
16	Impact of pH on structural and sensing characteristics of cresol red encapsulated polyethylene glycol assisted silica nanomatrix: Sol-gel method. Optical Materials, 2021, 121, 111546.	3.6	4
17	Fast responsive thermally stable silica microspheres for sensing evaluation: sol–gel approach. Journal of Sol-Gel Science and Technology, 2020, 96, 614-626.	2.4	8
18	Silica-titania nanocomposite based fiber optic sensor for aromatic hydrocarbons detection. Optics Communications, 2020, 471, 125825.	2.1	13

#	Article	IF	CITATIONS
19	Thermally and optically functionalized titania nanoparticles for pH sensing. Journal of Physics: Conference Series, 2020, 1484, 012012.	0.4	0
20	Hydrophobic effect evolution dependent manipulation of ZnO nanostructures morphology. Journal of the Australian Ceramic Society, 2020, 56, 1377-1384.	1.9	5
21	Thermally stable Au decorated silica-titania mesoporous nanocomposite for pH sensing evaluation. Applied Surface Science, 2020, 521, 146329.	6.1	10
22	Antimicrobial activity of citric acid functionalized iron oxide nanoparticles –Superparamagnetic effect. Ceramics International, 2020, 46, 10942-10951.	4.8	36
23	Optically active-thermally stable multi-dyes encapsulated mesoporous silica aerogel: A potential pH sensing nanomatrix. Microporous and Mesoporous Materials, 2019, 274, 183-189.	4.4	18
24	BPB dye confined growth of surfactant-assisted mesostructured silica matrix fiber optic sensing tracers. Journal of Saudi Chemical Society, 2019, 23, 427-438.	5.2	9
25	Synthesis and Characterization of Gold-Silver Nanoparticles in Deionized Water by Pulsed Laser Ablation (PLAL) Technique at Different Laser Parameter. International Journal of Nanoscience, 2019, 18,	0.7	10
26	Mesoporous anatase based opto-chemical sensor. Materials Science in Semiconductor Processing, 2019, 100, 236-244.	4.0	10
27	Optically active phenolphthalein encapsulated gold nanodendrites for fiber optic pH sensing. Applied Surface Science, 2019, 485, 323-331.	6.1	10
28	Grown of highly porous ZnO-nanoparticles by pulsed laser ablation in liquid technique for sensing applications. Journal of the Australian Ceramic Society, 2019, 55, 765-771.	1.9	5
29	Sol–gel based thermally stable mesoporous TiO2 nanomatrix for fiber optic pH sensing. Journal of Sol-Gel Science and Technology, 2018, 86, 42-50.	2.4	7
30	Synthesis of truncated tetrahedral cinnamon nanoparticles in citric acid media via PLAL technique. Materials Letters, 2018, 217, 267-270.	2.6	14
31	Influence of ZnO doping on structural, optical and pH-stimulus characteristics of silica-titania nanocomposite matrix. Journal of Saudi Chemical Society, 2018, 22, 826-837.	5.2	12
32	Crack-free high surface area silica-titania nanocomposite coating as opto-chemical sensor device. Sensors and Actuators A: Physical, 2018, 270, 153-161.	4.1	15
33	Surface functionality and optical properties impact of phenol red dye on mesoporous silica matrix for fiber optic pH sensing. Sensors and Actuators A: Physical, 2018, 276, 267-277.	4.1	25
34	Synthesis of optically active bromophenol blue encapsulated mesoporous silica–titania nanomatrix: structural and sensing characteristics. Journal of Sol-Gel Science and Technology, 2018, 85, 231-242.	2.4	13
35	Influence of organic pH dyes on the structural and optical characteristics of silica nanostructured matrix for fiber optic sensing. Sensors and Actuators A: Physical, 2018, 282, 28-38.	4.1	16
36	CR incorporation in mesoporous silica matrix for fiber optic pH sensing. Sensors and Actuators A: Physical, 2018, 280, 429-436.	4.1	13

#	Article	IF	CITATIONS
37	Low power CO2 laser modified iron/nickel alloyed pure aluminum surface: Evaluation of structural and mechanical properties. Surface and Coatings Technology, 2017, 315, 24-31.	4.8	8
38	The effect of magnetic and optic field in water electrolysis. International Journal of Hydrogen Energy, 2017, 42, 16325-16332.	7.1	40
39	Self-assembled hierarchical phenolphthalein encapsulated silica nanoparticles: Structural, optical and sensing response. Sensors and Actuators A: Physical, 2017, 266, 111-121.	4.1	19
40	Low temperature sol-gel based erbium doped mullite nanoparticles: Structural and optical properties. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 366-373.	5.3	5
41	Influence of gold nanoparticles on wound healing treatment in rat model: Photobiomodulation therapy. Lasers in Surgery and Medicine, 2017, 49, 380-386.	2.1	65
42	Synthesis and characterization of room temperature sol–gel-assisted transparent tin-doped magnesium oxide nanoparticles' protective coating. Journal of Sol-Gel Science and Technology, 2017, 81, 623-631.	2.4	6
43	Mesoporous nanocomposite coatings for photonic devices: sol–gel approach. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	5
44	Structures and emission features of high-density ZnO micro/nanostructure grown by an easy hydrothermal method. Materials Chemistry and Physics, 2016, 182, 298-307.	4.0	13
45	Synthesis and characterization of uncoated and cysteamine-coated gold nanoparticles by pulsed laser ablation. Journal of Nanophotonics, 2016, 10, 046007.	1.0	13
46	Sol–gel based optically active phenolphthalein encapsulated nanomatrices for sensing application. Journal of Sol-Gel Science and Technology, 2016, 79, 616-627.	2.4	11
47	Multilayer crack-free hybrid coatings for functional devices. Journal of Nanophotonics, 2016, 10, 026026.	1.0	4
48	Sol–gel based phenolphthalein encapsulated heterogeneous silica–titania optochemical pH nanosensor. Journal of Industrial and Engineering Chemistry, 2016, 34, 258-268.	5.8	33
49	Sol–gel based fiber optic pH nanosensor: Structural and sensing properties. Sensors and Actuators A: Physical, 2016, 238, 8-18.	4.1	35
50	Sol–gel-based single and multilayer nanoparticle thin films on low-temperature substrate poly-methyl methacrylate for optical applications. Journal of Sol-Gel Science and Technology, 2016, 77, 396-403.	2.4	13
51	Formation of Rutile Titania Phase at Low Temperature. Materials Today: Proceedings, 2015, 2, 5298-5301.	1.8	5
52	Study of Sol-gel Based Antireflection Coatings. Materials Today: Proceedings, 2015, 2, 5177-5181.	1.8	2
53	Effect of Boron Doping on the Kinetics of Mullite Thin Films Transformation. Materials Today: Proceedings, 2015, 2, 5441-5445.	1.8	0
54	Fiber Optic Displacement Sensor for Industrial Applications. IEEE Sensors Journal, 2015, 15, 4882-4887.	4.7	15

4

#	Article	IF	CITATIONS
55	Study of Single and Multilayer Silica-titania Thin Films on Plastic Substrate. Materials Today: Proceedings, 2015, 2, 5205-5208.	1.8	0
56	Structural and dielectric properties of boron-doped and un-doped mullite thin films. Journal of Sol-Gel Science and Technology, 2015, 74, 368-377.	2.4	5
57	Mesoporous SiO2–TiO2 nanocomposite for pH sensing. Sensors and Actuators B: Chemical, 2015, 221, 993-1002.	7.8	28
58	Determination of Hydrocarbon Level in Distilled Water via Fiber Optic Displacement Sensor. IEEE Sensors Journal, 2015, 15, 6135-6140.	4.7	3
59	Synthesis and characterization of hybrid matrix with encapsulated organic sensing dyes for pH sensing application. Journal of Industrial and Engineering Chemistry, 2014, 20, 4408-4414.	5.8	22
60	Preparation and characterization of crack-free sol–gel based SiO2–TiO2 hybrid nanoparticle film. Journal of Sol-Gel Science and Technology, 2013, 68, 162-168.	2.4	34