Dan Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8970942/publications.pdf

Version: 2024-02-01

230014 286692 4,808 43 47 27 citations h-index g-index papers 47 47 47 6043 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Revisiting the Impact of Morphology and Oxidation State of Cu on CO ₂ Reduction Using Electrochemical Flow Cell. Journal of Physical Chemistry Letters, 2022, 13, 345-351.	2.1	13
2	Solar Water Splitting Using Earthâ€Abundant Electrocatalysts Driven by Highâ€Efficiency Perovskite Solar Cells. ChemSusChem, 2022, 15, .	3.6	12
3	A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics. Nature Communications, 2022, 13, 89.	5 . 8	77
4	Transparency and Morphology Control of Cu ₂ O Photocathodes via an <i>in Situ</i> Electroconversion. ACS Energy Letters, 2022, 7, 1618-1625.	8.8	18
5	Realizing Highâ€Efficiency Perovskite Solar Cells by Passivating Tripleâ€Cation Perovskite Films. Solar Rrl, 2022, 6, .	3.1	9
6	Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nature Communications, 2022, 13, 2294.	5.8	89
7	Photoelectrochemical Oxygen Evolution on Mesoporous Hematite Films Prepared from Maghemite Nanoparticles. Journal of the Electrochemical Society, 2022, 169, 056522.	1.3	0
8	Thiocyanate-Mediated Dimensionality Transformation of Low-Dimensional Perovskites for Photovoltaics. Chemistry of Materials, 2022, 34, 6331-6338.	3.2	5
9	A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion. Energy and Environmental Science, 2021, 14, 3141-3151.	15.6	20
10	Spectroelectrochemical and Chemical Evidence of Surface Passivation at Zinc Ferrite (ZnFe ₂ O ₄) Photoanodes for Solar Water Oxidation. Advanced Functional Materials, 2021, 31, 2010081.	7.8	26
11	Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature Communications, 2021, 12, 2808.	5.8	91
12	Benzylammoniumâ€Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics. Advanced Functional Materials, 2021, 31, 2101163.	7.8	28
13	Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nature Communications, 2021, 12, 3387.	5 . 8	70
14	Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nature Communications, 2021, 12, 3383.	5.8	72
15	Microâ€Electrode with Fast Mass Transport for Enhancing Selectivity of Carbonaceous Products in Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2021, 31, 2103966.	7.8	16
16	New Insights into the Interface of Electrochemical Flow Cells for Carbon Dioxide Reduction to Ethylene. Journal of Physical Chemistry Letters, 2021, 12, 7583-7589.	2.1	21
17	Combined Precursor Engineering and Grain Anchoring Leading to MAâ€Free, Phaseâ€Pure, and Stable αâ€Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 27299-27306.	7.2	46
18	Carbazol-phenyl-phenothiazine-based sensitizers for dye-sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 26311-26322.	5.2	6

#	Article	IF	CITATIONS
19	Guanineâ€Stabilized Formamidinium Lead Iodide Perovskites. Angewandte Chemie - International Edition, 2020, 59, 4691-4697.	7.2	61
20	Guanineâ€Stabilized Formamidinium Lead Iodide Perovskites. Angewandte Chemie, 2020, 132, 4721-4727.	1.6	0
21	Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 19980-19991.	6.6	145
22	Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nature Communications, 2020, 11 , 318 .	5.8	139
23	Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Advanced Materials, 2020, 32, e1907757.	11.1	303
24	Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels. Angewandte Chemie, 2019, 131, 15178-15182.	1.6	33
25	Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels. Angewandte Chemie - International Edition, 2019, 58, 15036-15040.	7.2	150
26	Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR. Journal of the American Chemical Society, 2019, 141, 17659-17669.	6.6	104
27	Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst. Joule, 2019, 3, 2930-2941.	11.7	85
28	Selective C–C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 18704-18714.	6.6	270
29	Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discussions, 2019, 215, 282-296.	1.6	56
30	SnS Quantum Dots as Hole Transporter of Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 3822-3829.	2.5	26
31	Photoelectrocatalytic arene C–H amination. Nature Catalysis, 2019, 2, 366-373.	16.1	193
32	Bimetallic Electrocatalysts for Carbon Dioxide Reduction. Chimia, 2019, 73, 928.	0.3	7
33	Understanding the Electrochemical Reduction of Carbon Dioxide at Copper Surfaces. ACS Symposium Series, 2019, , 209-223.	0.5	1
34	The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. Nature Communications, 2018, 9, 925.	5.8	214
35	Investigating the Role of Copper Oxide in Electrochemical CO ₂ Reduction in Real Time. ACS Applied Materials & Interfaces, 2018, 10, 8574-8584.	4.0	207
36	Understanding the Heterogeneous Electrocatalytic Reduction of Carbon Dioxide on Oxideâ€Derived Catalysts. ChemElectroChem, 2018, 5, 219-237.	1.7	126

#	Article	IF	CITATIONS
37	On the Role of Sulfur for the Selective Electrochemical Reduction of CO ₂ to Formate on CuS _{<i>x</i>} Catalysts. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28572-28581.	4.0	157
38	Continuous Production of Ethylene from Carbon Dioxide and Water Using Intermittent Sunlight. ACS Sustainable Chemistry and Engineering, 2017, 5, 9191-9199.	3.2	39
39	Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO ₂ reduction reaction. Catalysis Science and Technology, 2017, 7, 5820-5832.	2.1	29
40	Electrochemical Carbon Dioxide Reduction on Cu-Zn Bimetallic Catalysts with Enhanced Ethanol Selectivity. ECS Meeting Abstracts, 2017, , .	0.0	0
41	Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cu _{<i>x</i>} Zn Catalysts. ACS Catalysis, 2016, 6, 8239-8247.	5. 5	539
42	Efficient and Stable Evolution of Oxygen Using Pulse-Electrodeposited Ir/Ni Oxide Catalyst in Fe-Spiked KOH Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 15985-15990.	4.0	46
43	Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to <i>n</i> Propanol. Journal of Physical Chemistry Letters, 2016, 7, 20-24.	2.1	211
44	Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catalysis, 2015, 5, 2814-2821.	5. 5	741
45	Electrocatalysts for the Selective Reduction of Carbon Dioxide to Useful Products. Chimia, 2015, 69, 131.	0.3	4
46	Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catalysis Science and Technology, 2015, 5, 161-168.	2.1	292
47	Combined precursor engineering and grain anchoring leading to MAâ€free, phaseâ€pure and stable αâ€formamidinium lead iodide perovskites for efficient solar cells. Angewandte Chemie, 0, , .	1.6	11