
Yasser B Saddeek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8970176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nb2O5–TeO2 and Nb2O5–Li2O–TeO2 glasses: Evaluation of elastic properties. Journal of Non-Crystalline Solids, 2022, 575, 121229.	1.5	6
2	Investigations of mechanical and radiation shielding properties of BaTiO3-modified cadmium alkali borate glass. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	22
3	Structural and ultrasound studies of Pr ₂ O ₃ settlement in AlNaBi–phosphate spectacles. Physica Scripta, 2022, 97, 065701.	1.2	4
4	Effect of PbO on the elastic and radiation shielding properties of B2O3–Bi2O3–Al2O3–CuO glasses. Radiation Physics and Chemistry, 2022, 196, 110129.	1.4	12
5	Prediction of mechanical and radiation parameters of glasses with high Bi2O3 concentration. Results in Physics, 2021, 21, 103839.	2.0	31
6	Mechanical, structural and nuclear radiation shielding competencies of some tellurite glasses reinforced with molybdenum trioxide. Physica Scripta, 2021, 96, 045702.	1.2	9
7	Physical and mechanical properties of ternary Ge-Se-Sb glasses for near-infrared applications. Physica Scripta, 2021, 96, 055805.	1.2	5
8	Effects of Nd2O3 substitution on the mechanical and radiation shielding properties of alumino-borobismuthate glasses. European Physical Journal Plus, 2021, 136, 1.	1.2	5
9	Ultrasonic relaxation of TeWB glasses at low temperatures. Results in Physics, 2021, 26, 104336.	2.0	0
10	An experimental investigation on structural, mechanical and physical properties of Strontium–Silicon Borate glass system through Bismuth-Aluminum substitution. Optical Materials, 2021, 117, 111124.	1.7	10
11	A study of thermal parameters of some alkali boro-bismuthate glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 23614-23623.	1.1	1
12	The Impact of PbF2-Based Glasses on Radiation Shielding and Mechanical Concepts: An Extensive Theoretical and Monte Carlo Simulation Study. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3934-3942.	1.9	10
13	Material characterization of WO3/Bi2O3 substituted calcium-borosilicate glasses: Structural, physical, mechanical properties and gamma-ray resistance competencies. Journal of Alloys and Compounds, 2021, 888, 161419.	2.8	31
14	Role of Al2O3 in Al2O3–Bi2O3–P2O5 glasses. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	9
15	Mössbauer and differential thermal analysis studies of iron alkali lead-phosphate glasses. Physica Scripta, 2021, 96, 025706.	1.2	1
16	The Influence of CoO/P2O5 Substitutions on the Structural, Mechanical, and Radiation Shielding of Boro-Phosphate Glasses. Materials, 2021, 14, 6632.	1.3	3
17	Mechanical and nuclear shielding properties of sodium cadmium borate glasses: Impact of cadmium oxide additive. Ceramics International, 2020, 46, 2661-2669.	2.3	30
18	Improvement of mechanical properties and radiation shielding performance of AlBiBO3 glasses using yttria: An experimental investigation. Ceramics International, 2020, 46, 3534-3542.	2.3	47

#	Article	IF	CITATIONS
19	Improvement of radiation shielding properties of some tellurovanadate based glasses. Physica Scripta, 2020, 95, 035402.	1.2	11
20	Morphological and optical properties of thin film metal oxide based phosphate glasses for optoelectronic technology. Optical Materials, 2020, 99, 109541.	1.7	5
21	Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3. Nuclear Engineering and Technology, 2020, 52, 1297-1303.	1.1	50
22	Synthesis and characterization of lead borate glasses comprising cement kiln dust and Bi2O3 for radiation shielding protection. Materials Chemistry and Physics, 2020, 242, 122510.	2.0	18
23	Gamma rays interactions with CdO-doped lead silicate glasses. Optical and Quantum Electronics, 2020, 52, 1.	1.5	14
24	Promising applicable heterometallic Al2O3/PbO2 nanoparticles in shielding properties. Journal of Materials Research and Technology, 2020, 9, 13956-13962.	2.6	18
25	Glass transition and crystallization kinetics of Na2O – B2O3 – Nb2O5 – Bi2O3 ceramic glasses. Journal of Non-Crystalline Solids, 2020, 546, 120260.	1.5	6
26	Exponential trap distributions of carriers in noncrystalline films of P1-2xNa1-2xO3-4xPbx (x = 0, 0.15 an	d) Ti ETQa 1:1	q0
27	Mechanical, physical and gamma ray shielding properties of xPbO-(50-x) MoO3–50V2O5 (25 ≤ ≤45Âm	ol) ₂ ;jETQ	q1 <u>1</u> 90.78431
28	(59.5–x) P2O5–30Na2O–10Al2O3–0.5CoO–xNd2O3 glassy system: an experimental investigation of structural and gamma-ray shielding properties. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	n 1.1	6
29	Study of the physical properties of quaternary Ge–As–Te–Pb thin films for technology applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	4
30	Experimental investigations on elastic and radiation shielding parameters of WO3-B2O3-TeO2 glasses. Journal of Non-Crystalline Solids, 2020, 544, 120207.	1.5	35
31	Mechanical and nuclear radiation shielding properties of different boro-tellurite glasses: a comprehensive investigation on large Bi ₂ O ₃ concentration. Physica Scripta, 2020, 95, 085701.	1.2	11
32	Low temperature ultrasonic study of BNaOBiNb glasses. Ceramics International, 2020, 46, 24544-24551.	2.3	3
33	Mechanical and electrical parameters of a-Ge-Se-Sn glasses. Physica B: Condensed Matter, 2020, 583, 412059.	1.3	5
34	Theoretical characterization and band gap tuning of Snx(GeSe2)100-x thin films. Materials Chemistry and Physics, 2020, 251, 123133.	2.0	23
35	Theoretical insights of ultrasonic relaxation in PbW-tellurite glasses. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	1
36	Alkaline phosphate glasses and synergistic impact of germanium oxide (GeO2) additive: Mechanical and nuclear radiation shielding behaviors. Ceramics International, 2020, 46, 16781-16797.	2.3	20

#	Article	IF	CITATIONS
37	An in-depth investigation from mechanical durability to structural and nuclear radiation attenuation properties: B ₂ O ₃ –Na ₂ O–Bi ₂ O ₃ –Nb ₂ Ogetasses experience. Physica Scripta, 2020, 95, 105701.	< <u>1.2</u> _{5<!--</td--><td>10 sub≻</td>}	10 sub≻
38	Entanglement of thermal state of quantum annealing processor. Thermal Science, 2020, 24, 325-332.	0.5	4
39	Entanglement of thermal state of quantum annealing processor. Thermal Science, 2020, 24, 325-332.	0.5	0
40	The Effect of TiO2 on the Optical and Mechanical Properties of Heavy Metal Oxide Borosilicate Glasses. Silicon, 2019, 11, 1253-1260.	1.8	29
41	Fabrication and Characterization of Glass and Glass-Ceramic from Cement Dust and Limestone Dust. Silicon, 2019, 11, 807-815.	1.8	3
42	Crystallization kinetics of binary arsenic selenium chalcogenides. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2069-2075.	2.0	4
43	The role of Mn doping on the electrical and mechanical properties of Ge–Se–Mn glasses. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	3
44	Preparation and characterization of Li2B4O7 – TiO2 – SiO2 glasses doped with metal-organic framework derived nano-porous Cr2O3. Journal of Non-Crystalline Solids, 2019, 508, 51-61.	1.5	20
45	Study of the TiO2 effect on the heavy metals oxides borosilicate glasses structure using gamma-ray spectroscopy and positron annihilation technique. Radiation Physics and Chemistry, 2019, 164, 108345.	1.4	30
46	Gamma, neutron shielding and mechanical parameters for lead vanadate glasses. Ceramics International, 2019, 45, 14058-14072.	2.3	116
47	Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3-MoO3-B2O3-SiO2-Na2O-Fe2O3 glass system. Results in Physics, 2019, 13, 102165.	2.0	91
48	Optical, Infrared Spectral and Mechanical Investigations of CeO2-Doped Borosilicate Glasses Containing Bi2O3 and TeO2. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1680-1687.	1.9	10
49	The effective role of La2O3 contribution on zinc borate glasses: radiation shielding and mechanical properties. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	34
50	Radiation protection parameters of glasses with different yttria additives at different photon energies. Materials Research Express, 2019, 6, 125201.	0.8	6
51	Radiation shielding features using MCNPX code and mechanical properties of the PbO Na2O B2O3CaO Al2O3SiO2 glass systems. Composites Part B: Engineering, 2019, 167, 231-240.	5.9	89
52	Synthesis, Mechanical and Optical Features of Dy2O3 Doped Lead Alkali Borosilicate Glasses. Silicon, 2019, 11, 1853-1861.	1.8	9
53	Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code. Materials Chemistry and Physics, 2019, 223, 209-219.	2.0	101
54	Synthesis and Physical Characteristics of New Glasses from Some Environmental Wastes. Silicon, 2019, 11, 2445-2453.	1.8	4

#	Article	IF	CITATIONS
55	Structural Analyses of Halide Alkali Lead Borate Glasses. Silicon, 2019, 11, 2413-2419.	1.8	2
56	A comprehensive study of electrical and optical properties of phosphate oxide-based glasses doped with Er2O3. Journal of Materials Science: Materials in Electronics, 2018, 29, 9994-10007.	1.1	15
57	Spectroscopic properties and Judd-Ofelt analysis of Dy3+ ions in molybdenum borosilicate glasses. Journal of Luminescence, 2018, 196, 477-484.	1.5	46
58	Attenuation-density anomalous relationship of lead alkali borosilicate glasses. Radiation Physics and Chemistry, 2018, 150, 182-188.	1.4	42
59	Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses. Current Applied Physics, 2018, 18, 717-727.	1.1	118
60	Some Physical Features of Glasses Synthesized from Some Environmental Wastes. Silicon, 2018, 10, 431-438.	1.8	4
61	DTA and FTIR of 70TeO2–(25Ââ^'Âx)MnO2–xV2O5–5Fe2O3 tellurite glass systems. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1857-1865.	2.0	13
62	Mechanical and Thermal Properties of Lead Borate Glasses Containing CaO and NaF. Silicon, 2018, 10, 1973-1978.	1.8	15
63	Thermal entanglement in quantum annealing processor. International Journal of Quantum Information, 2018, 16, 1850006.	0.6	15
64	Physical properties of pseudo quaternary Na2B4O7 – SiO2 – MoO3 – Dy2O3 glasses. Ceramics International, 2018, 44, 3862-3867.	2.3	30
65	Study of the optical properties of amorphous As–Se–S thin films. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	11
66	Physical characterization of As-Se-S glasses. Materials Research Express, 2018, 5, 065208.	0.8	15
67	Determination of gamma ray spectrometry efficiency for the attenuation coefficients of some bismuth borate glasses by MCNP and (ISOCS) techniques. Radiation Detection Technology and Methods, 2018, 2, 1.	0.4	3
68	Magnetic Properties of Some Tellurite Glasses. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3079-3084.	0.8	6
69	Elastic, optical and structural features of wide range of CdO- Na ₂ B ₄ O ₇ glasses. Materials Research Express, 2018, 5, 065204.	0.8	22
70	Physical properties of B2O3–TeO2–Bi2O3 glass system. Journal of Non-Crystalline Solids, 2018, 498, 82-88.	1.5	46
71	Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Materials Chemistry and Physics, 2018, 217, 11-22.	2.0	102
72	Effect of cement kiln dust and gamma irradiation on the ultrasonic parameters of HMO borate glasses. Nuclear Instruments & Methods in Physics Research B, 2017, 394, 44-49.	0.6	7

#	Article	IF	CITATIONS
73	Energy levels, oscillator strengths, and transition probabilities for sulfur-like scandium, Sc VI. Indian Journal of Physics, 2017, 91, 1029-1048.	0.9	2
74	Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses. Optical Materials, 2017, 72, 169-176.	1.7	55
75	Configuration interaction calculations and excitation rates of X-ray and EUV transitions in sulfurlike manganese. Journal of Electron Spectroscopy and Related Phenomena, 2017, 215, 22-27.	0.8	4
76	Discussions of the physical properties of MoO3–V2O5–PbO films. Journal of Non-Crystalline Solids, 2017, 475, 161-166.	1.5	5
77	Effect of MoO3 Content on Structural, Thermal, Mechanical and Optical Properties of (B2O3-SiO2-Bi2O3-Na2O-Fe2O3) Class System. Silicon, 2017, 9, 785-793.	1.8	41
78	Ultrasonic and structural features of some borosilicate glasses modified with heavy metals. Bulletin of Materials Science, 2017, 40, 545-553.	0.8	13
79	Investigations on spectroscopic and elasticity studies of Nd2O3 doped CANP phosphate glasses. Journal of Alloys and Compounds, 2017, 694, 325-332.	2.8	12
80	Fabrication and physical characteristics of new glasses from wastes of limestone and phosphorite rocks. Bulletin of Materials Science, 2016, 39, 1791-1799.	0.8	8
81	Linear and non-linear optical properties of amorphous Se and M5Se95 (M = Ge, Ga and Zn) films. Bulletin of Materials Science, 2016, 39, 1819-1825.	0.8	8
82	Elastic and optical properties of Ge x Se2Sb1â^'x (0.0 ≤ ≤.0) glasses. Bulletin of Materials Science, 2016, 39, 491-498.	0.8	3
83	Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y 2 O 3). Journal of Non-Crystalline Solids, 2016, 454, 13-18.	1.5	65
84	Electrical and thermoelectric properties of different compositions of Ge–Se–In thin films. Physica B: Condensed Matter, 2016, 497, 1-5.	1.3	16
85	Discussion on the electrical and thermoelectrical properties of amorphous In–Sb–Te Films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	5
86	Evaluation of the Algorithm's Accuracy in the Computation of the Dose Distribution in the Brain Tumors. Biosciences, Biotechnology Research Asia, 2016, 13, 221-229.	0.2	0
87	Prediction of Dose Calculation of Breast and Chest Tumors Using different Algorithms. Biosciences, Biotechnology Research Asia, 2016, 13, 2379-2385.	0.2	0
88	Ultrasonic investigations of some bismuth borate glasses doped with Al2O3. Bulletin of Materials Science, 2015, 38, 241-246.	0.8	18
89	Structure and crystallization kinetics of manganese lead tellurite glasses. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1215-1224.	2.0	19
90	FTIR spectroscopic features of <i>γ</i> -ray influence on new cement kiln dust based glasses. Physica Scripta, 2015, 90, 085702.	1.2	6

#	Article	IF	CITATIONS
91	Mechanical relaxation of some tellurovanadate glasses. Journal of Non-Crystalline Solids, 2015, 417-418, 28-33.	1.5	17
92	Effect of gamma irradiation on the FTIR of cement kiln dust–bismuth borate glasses. Journal of Non-Crystalline Solids, 2015, 419, 110-117.	1.5	36
93	Structural and mechanical features of some lanthanum tellurite glasses. Canadian Journal of Physics, 2015, 93, 460-465.	0.4	7
94	Fabrication and analysis of new bismuth borate glasses containing cement kiln dust. Journal of Non-Crystalline Solids, 2014, 403, 47-52.	1.5	23
95	Study of rigidity of semiconducting vanadate glasses and its importance in use of coatings. Bulletin of Materials Science, 2014, 37, 661-667.	0.8	14
96	FTIR and physical features of Al2O3–La2O3–P2O5–PbO glasses. Journal of Non-Crystalline Solids, 2014, 387, 30-35.	1.5	51
97	Structural and optical properties of high refractive indices lead vanadate thin films. Materials Chemistry and Physics, 2014, 144, 433-439.	2.0	15
98	Optical constants and magnetic susceptibility of xLa2O3–30PbO–(70 â^'x) B2O3 glasses. Journal of Non-Crystalline Solids, 2013, 375, 69-73.	1.5	15
99	Thermal features and physical properties of sulfur modified barium vanadate glasses. Phase Transitions, 2013, 86, 477-489.	0.6	10
100	Correlation between the dimensionality and the constants of elasticity of rare-earth doped borate glasses. Glass Physics and Chemistry, 2012, 38, 373-378.	0.2	5
101	Theoretical analysis of constants of elasticity of lead calcium alumino-borosilicate glass system. Glass Physics and Chemistry, 2012, 38, 437-443.	0.2	8
102	Influence of MoO3 on the Structure of Lithium Aluminum Phosphate Glasses. Archives of Acoustics, 2012, 37, .	0.9	10
103	Study of elastic moduli of lithium borobismuthate glasses using ultrasonic technique. Journal of Non-Crystalline Solids, 2011, 357, 2920-2925.	1.5	22
104	Dielectric dispersion in lithium–bismuth-borate glasses. Current Applied Physics, 2011, 11, 55-60.	1.1	80
105	Network structure of molybdenum lead phosphate glasses: Infrared spectra and constants of elasticity. Physica B: Condensed Matter, 2011, 406, 562-566.	1.3	39
106	Investigation and application of hollow anode glow discharge ion source. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3464-3467.	0.6	2
107	Effect of MoO3 additions on the thermal stability and crystallization kinetics of PbO–Sb2O3–As2O3 glasses. Journal of Thermal Analysis and Calorimetry, 2010, 100, 543-549.	2.0	22
108	Spectroscopic, mechanical and magnetic characterization of some bismuth borate glasses containing gadolinium ions. Solid State Sciences, 2010, 12, 1426-1434.	1.5	56

#	Article	IF	CITATIONS
109	Optical study of lead borosilicate glasses. Physica B: Condensed Matter, 2010, 405, 2407-2412.	1.3	94
110	Effect of WO ₃ on the glass transition and crystallization kinetics of borotellurite glasses. Philosophical Magazine, 2010, 90, 4429-4441.	0.7	28
111	Structural influence of PbO by means of FTIR and acoustics on calcium alumino-borosilicate glass system. Journal of Non-Crystalline Solids, 2010, 356, 1089-1095.	1.5	74
112	Effect of La2O3 on the structure of lead borate glasses. Journal of Non-Crystalline Solids, 2010, 356, 1452-1457.	1.5	72
113	Optical properties of the Na2O–B2O3–Bi2O3–MoO3 glasses. Journal of Alloys and Compounds, 2010, 494, 210-213.	2.8	35
114	Physical and structural properties of some bismuth borate glasses. Materials Chemistry and Physics, 2009, 115, 280-286.	2.0	112
115	Ultrasonic studies on alkali borate tungstate glasses. Journal of Physics and Chemistry of Solids, 2009, 70, 173-179.	1.9	38
116	Crystallization kinetics of Li2O–PbO–V2O5 glasses. Physica B: Condensed Matter, 2009, 404, 2412-2418.	1.3	17
117	Spectroscopic analysis and magnetic susceptibility of CuO–TeO2–V2O5 glasses. Journal of Magnetism and Magnetic Materials, 2009, 321, 4039-4044.	1.0	33
118	Synthesis and properties of MoO ₃ –V ₂ O ₅ –PbO glasses. Philosophical Magazine, 2009, 89, 2305-2320.	0.7	25
119	FTIR and ultrasonic investigations on modified bismuth borate glasses. Journal of Non-Crystalline Solids, 2009, 355, 348-354.	1.5	232
120	Structural and acoustical studies of lead sodium borate glasses. Journal of Alloys and Compounds, 2009, 467, 14-21.	2.8	133
121	Characterization of some lead vanadate glasses. Journal of Alloys and Compounds, 2009, 478, 447-452.	2.8	43
122	Crystallization kinetics of the TeO ₂ –BaO glass system. Philosophical Magazine, 2009, 89, 27-39.	0.7	19
123	Effect of B ₂ O ₃ on the structure and properties of tungsten–tellurite glasses. Philosophical Magazine, 2009, 89, 41-54.	0.7	38
124	Structural and optical properties of lithium borobismuthate glasses. Journal of Physics and Chemistry of Solids, 2008, 69, 2281-2287.	1.9	58
125	Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Physica B: Condensed Matter, 2008, 403, 2399-2407.	1.3	172
126	Structural and thermal stability criteria of Bi ₂ O ₃ –B ₂ O ₃ glasses. Journal of Physics Condensed Matter, 2008, 20, 155108.	0.7	83

#	Article	IF	CITATIONS
127	Thermal analysis and infrared study of Nb ₂ O ₅ –TeO ₂ glasses. Philosophical Magazine, 2008, 88, 3059-3073.	0.7	25
128	Synthesis and several features of the Na ₂ O-B ₂ O ₃ -Bi ₂ O ₃ -MoO ₃ glasses. Journal Physics D: Applied Physics, 2007, 40, 4674-4681.	1.3	65
129	Interpretation of mechanical properties and structure of TeO2–Li2O–B2O3 glasses. Physica B: Condensed Matter, 2007, 398, 1-7.	1.3	67
130	Structural interpretations of aluminosilicate glasses. Physica B: Condensed Matter, 2005, 363, 19-24.	1.3	14
131	Elastic properties of Gd3+-doped tellurovanadate glasses using pulse-echo technique. Materials Chemistry and Physics, 2005, 91, 146-153.	2.0	69
132	Constants of elasticity of Li2O–B2O3–fly ash: Structural study by ultrasonic technique. Materials Chemistry and Physics, 2005, 94, 213-220.	2.0	15
133	Ultrasonic study and physical properties of some borate glasses. Materials Chemistry and Physics, 2004, 83, 222-228.	2.0	74
134	Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques. Physica Status Solidi A, 2004, 201, 2053-2062.	1.7	12
135	Structural analysis of alkali borate glasses. Physica B: Condensed Matter, 2004, 344, 163-175.	1.3	61
136	Effect of TeO2 on the elastic moduli of sodium borate glasses. Physica B: Condensed Matter, 2004, 348, 475-484.	1.3	131
137	Relaxation of longitudinal ultrasonic waves in some tellurite glasses. Materials Chemistry and Physics, 2002, 74, 222-229.	2.0	55
138	Structural and optical properties of BaTiO ₃ modified cadmium alkali borate glasses. Physica Scripta, 0, , .	1.2	8