Stuart J Pearse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8970164/publications.pdf

Version: 2024-02-01

20 papers

2,697 citations

706676 14 h-index 19 g-index

20 all docs

 $\begin{array}{c} 20 \\ \\ \text{docs citations} \end{array}$

20 times ranked

3701 citing authors

#	Article	IF	CITATIONS
1	Interactions among clusterâ€root investment, leaf phosphorus concentration, and relative growth rate in two ⟨i⟩Lupinus⟨ i⟩ species. American Journal of Botany, 2015, 102, 1529-1537.	0.8	5
2	Mineral nutrition of <i>campos rupestres</i> plant species on contrasting nutrientâ€impoverished soil types. New Phytologist, 2015, 205, 1183-1194.	3.5	149
3	Low levels of ribosomal <scp>RNA</scp> partly account for the very high photosynthetic phosphorusâ€use efficiency of <scp>P</scp> roteaceae species. Plant, Cell and Environment, 2014, 37, 1276-1298.	2.8	121
4	Nutrient limitation along the Jurien Bay dune chronosequence: response to Uren & Dournal of Ecology, 2013, 101, 1088-1092.	1.9	14
5	Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate. Annals of Botany, 2013, 112, 1449-1459.	1.4	18
6	Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot., 2013, 1, cot010-cot010.		76
7	Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment. Annals of Botany, 2013, 111, 445-454.	1.4	67
8	Viminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus supplies. Annals of Botany, 2013, 111, 801-809.	1.4	13
9	Proteaceae from severely phosphorusâ€impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorusâ€useâ€efficiency. New Phytologist, 2012, 196, 1098-1108.	3.5	225
10	Experimental assessment of nutrient limitation along a 2â€millionâ€year dune chronosequence in the southâ€western Australia biodiversity hotspot. Journal of Ecology, 2012, 100, 631-642.	1.9	189
11	Why does the musketeer approach to phosphorus acquisition from sparingly soluble forms fail: All for one, but not one for all?. Plant and Soil, 2011, 348, 81-83.	1.8	4
12	An enzymatic fluorescent assay for the quantification of phosphite in a microtiter plate format. Analytical Biochemistry, 2011, 412, 74-78.	1.1	14
13	Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons To Be Learned for Future Crops?. Plant Physiology, 2011, 156, 1058-1066.	2.3	176
14	Biological nitrification inhibition by <i>Brachiaria humidicola</i> roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms. Soil Science and Plant Nutrition, 2009, 55, 725-733.	0.8	47
15	Detection, isolation and characterization of a rootâ€exuded compound, methyl 3â€(4â€hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (<i>Sorghum bicolor</i>). New Phytologist, 2008, 180, 442-451.	3.5	148
16	Rhizosphere processes do not explain variation in P acquisition from sparingly soluble forms among Lupinus albus accessions. Australian Journal of Agricultural Research, 2008, 59, 616.	1.5	8
17	Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytologist, 2007, 173, 181-190.	3.5	175
18	Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere. New Phytologist, 2006, 169, 515-524.	3.5	67

#	Article	IF	CITATIONS
19	Carboxylate release of wheat, canola and $11~{ m grain}$ legume species as affected by phosphorus status. Plant and Soil, 2006, 288, 127-139.	1.8	169
20	Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits. Annals of Botany, 2006, 98, 693-713.	1.4	1,012