Justyna Knapik-Kowalczuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8970045/publications.pdf

Version: 2024-02-01

68 papers 1,569 citations

331538 21 h-index 345118 36 g-index

68 all docs 68
docs citations

68 times ranked 1687 citing authors

#	Article	IF	Citations
1	3D printed orodispersible films with Aripiprazole. International Journal of Pharmaceutics, 2017, 533, 413-420.	2.6	182
2	Conductivity Mechanism in Polymerized Imidazolium-Based Protic Ionic Liquid [HSO ₃ –BVIm][OTf]: Dielectric Relaxation Studies. Macromolecules, 2014, 47, 4056-4065.	2,2	81
3	Molecular Dynamics and Physical Stability of Coamorphous Ezetimib and Indapamide Mixtures. Molecular Pharmaceutics, 2015, 12, 3610-3619.	2.3	78
4	Physicochemical properties of tadalafil solid dispersions – Impact of polymer on the apparent solubility and dissolution rate of tadalafil. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 106-115.	2.0	67
5	Physical Stability of the Amorphous Anticholesterol Agent (Ezetimibe): The Role of Molecular Mobility. Molecular Pharmaceutics, 2014, 11, 4280-4290.	2.3	54
6	Effect of Pressure on Decoupling of Ionic Conductivity from Segmental Dynamics in Polymerized Ionic Liquids. Macromolecules, 2015, 48, 8660-8666.	2.2	48
7	Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts. Journal of Chemical Physics, 2015, 142, 184504.	1.2	46
8	Stabilization of the Amorphous Ezetimibe Drug by Confining Its Dimension. Molecular Pharmaceutics, 2016, 13, 1308-1316.	2.3	43
9	Molecular Origin of Enhanced Proton Conductivity in Anhydrous Ionic Systems. Journal of the American Chemical Society, 2015, 137, 1157-1164.	6.6	41
10	Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures. Molecular Pharmaceutics, 2017, 14, 1071-1081.	2.3	41
11	Speed it up, slow it down…An issue of bicalutamide release from 3D printed tablets. European Journal of Pharmaceutical Sciences, 2020, 143, 105169.	1.9	41
12	A New Method To Identify Physically Stable Concentration of Amorphous Solid Dispersions (I): Case of Flutamide + Kollidon VA64. Molecular Pharmaceutics, 2017, 14, 3370-3380.	2.3	40
13	Molecular Dynamics and Physical Stability of Amorphous Nimesulide Drug and Its Binary Drug–Polymer Systems. Molecular Pharmaceutics, 2016, 13, 1937-1946.	2.3	37
14	Co-Stabilization of Amorphous Pharmaceuticalsâ€"The Case of Nifedipine and Nimodipine. Molecular Pharmaceutics, 2018, 15, 2455-2465.	2.3	37
15	Toward a Better Understanding of the Physical Stability of Amorphous Anti-Inflammatory Agents: The Roles of Molecular Mobility and Molecular Interaction Patterns. Molecular Pharmaceutics, 2015, 12, 3628-3638.	2.3	36
16	Planetary ball milling and supercritical fluid technology as a way to enhance dissolution of bicalutamide. International Journal of Pharmaceutics, 2017, 533, 470-479.	2.6	36
17	Revealing the Charge Transport Mechanism in Polymerized Ionic Liquids: Insight from High Pressure Conductivity Studies. Chemistry of Materials, 2017, 29, 8082-8092.	3.2	32
18	Atorvastatin as a Promising Crystallization Inhibitor of Amorphous Probucol: Dielectric Studies at Ambient and Elevated Pressure. Molecular Pharmaceutics, 2017, 14, 2670-2680.	2.3	31

#	Article	IF	Citations
19	Molecular Factors Governing the Liquid and Glassy States Recrystallization of Celecoxib in Binary Mixtures with Excipients of Different Molecular Weights. Molecular Pharmaceutics, 2017, 14, 1154-1168.	2.3	28
20	Theoretical Model for the Structural Relaxation Time in Coamorphous Drugs. Molecular Pharmaceutics, 2019, 16, 2992-2998.	2.3	27
21	The Self-Assembly Phenomenon of Poloxamers and Its Effect on the Dissolution of a Poorly Soluble Drug from Solid Dispersions Obtained by Solvent Methods. Pharmaceutics, 2019, 11, 130.	2.0	25
22	The effect of electrostatic interactions on the formation of pharmaceutical eutectics. Physical Chemistry Chemical Physics, 2018, 20, 27361-27367.	1.3	21
23	Broadband dielectric spectroscopy as an experimental alternative to calorimetric determination of the solubility of drugs into polymer matrix: Case of flutamide and various polymeric matrixes. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 231-239.	2.0	21
24	Multivariate Design of 3D Printed Immediate-Release Tablets with Liquid Crystal-Forming Drug—Itraconazole. Materials, 2020, 13, 4961.	1.3	20
25	Crystallization of supercooled fenofibrate studied at ambient and elevated pressures. Physical Chemistry Chemical Physics, 2017, 19, 9879-9888.	1.3	19
26	Changes in Physical Stability of Supercooled Etoricoxib after Compression. Molecular Pharmaceutics, 2018, 15, 3969-3978.	2.3	18
27	Physical Stability and Viscoelastic Properties of Co-Amorphous Ezetimibe/Simvastatin System. Pharmaceuticals, 2019, 12, 40.	1.7	18
28	Synthesis, characterization and dielectric relaxation study of hyperbranched polymers with different molecular architecture. Polymer, 2016, 100, 227-237.	1.8	17
29	Dielectric Relaxation Study at Ambient and Elevated Pressure of the Modeled Lipophilic Drug Fenofibrate. Journal of Physical Chemistry B, 2016, 120, 11298-11306.	1.2	17
30	Enhanced dissolution of solid dispersions containing bicalutamide subjected to mechanical stress. International Journal of Pharmaceutics, 2018, 542, 18-26.	2.6	17
31	How is charge transport different in ionic liquids? The effect of high pressure. Physical Chemistry Chemical Physics, 2017, 19, 14141-14147.	1.3	16
32	Effect of Cation n-Alkyl Side-Chain Length, Temperature, and Pressure on the Glass-Transition Dynamics and Crystallization Tendency of the [CnC1Pyrr]+[Tf2N]â^² lonic Liquid Family. Journal of Physical Chemistry C, 2019, , .	1.5	16
33	Influence of Polymeric Additive on the Physical Stability and Viscoelastic Properties of Aripiprazole. Molecular Pharmaceutics, 2019, 16, 1742-1750.	2.3	16
34	How Does the Addition of Kollidon®VA64 Inhibit the Recrystallization and Improve Ezetimibe Dissolution from Amorphous Solid Dispersions?. Pharmaceutics, 2021, 13, 147.	2.0	16
35	Amorphous Protic Ionic Systems as Promising Active Pharmaceutical Ingredients: The Case of the Sumatriptan Succinate Drug. Molecular Pharmaceutics, 2016, 13, 1111-1122.	2.3	15
36	Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former. Scientific Reports, 2017, 7, 7084.	1.6	15

#	Article	IF	Citations
37	Can Storage Time Improve the Physical Stability of Amorphous Pharmaceuticals with Tautomerization Ability Exposed to Compression? The Case of a Chloramphenicol Drug. Molecular Pharmaceutics, 2018, 15, 1928-1940.	2.3	15
38	Enhanced pharmacological efficacy of sumatriptan due to modification of its physicochemical properties by inclusion in selected cyclodextrins. Scientific Reports, 2018, 8, 16184.	1.6	15
39	Molecular Disorder of Bicalutamideâ€"Amorphous Solid Dispersions Obtained by Solvent Methods. Pharmaceutics, 2018, 10, 194.	2.0	15
40	On the molecular origin of secondary relaxations in amorphous protic ionic conductor chlorpromazine hydrochloride — High pressure dielectric studies. Journal of Non-Crystalline Solids, 2015, 407, 81-87.	1.5	14
41	Glass Transition Dynamics and Physical Stability of Amorphous Griseofulvin in Binary Mixtures with Low- <i>T</i> _g Excipients. Molecular Pharmaceutics, 2019, 16, 3626-3635.	2.3	14
42	Compression-Induced Phase Transitions of Bicalutamide. Pharmaceutics, 2020, 12, 438.	2.0	13
43	Importance of Mesoporous Silica Particle Size in the Stabilization of Amorphous Pharmaceuticalsâ€"The Case of Simvastatin. Pharmaceutics, 2020, 12, 384.	2.0	13
44	Molecular relaxations in supercooled liquid and glassy states of amorphous gambogic acid: Dielectric spectroscopy, calorimetry, and theoretical approach. AIP Advances, 2020, 10, .	0.6	13
45	The dielectric signature of glass density. Applied Physics Letters, 2017, 111, .	1.5	12
46	How does the high pressure affects the solubility of the drug within the polymer matrix in solid dispersion systems. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 143, 8-17.	2.0	11
47	Essential meaning of high pressure measurements in discerning the properties of monohydroxy alcohols with a single phenyl group. Journal of Molecular Liquids, 2020, 305, 112863.	2.3	11
48	Current research trends in dielectric relaxation studies of amorphous pharmaceuticals: Physical stability, tautomerism, and the role of hydrogen bonding. TrAC - Trends in Analytical Chemistry, 2021, 134, 116097.	5.8	11
49	How to Obtain the Maximum Properties Flexibility of 3D Printed Ketoprofen Tablets Using Only One Drug-Loaded Filament?. Molecules, 2021, 26, 3106.	1.7	10
50	Molecular Dynamics and Physical Stability of Ibuprofen in Binary Mixtures with an Acetylated Derivative of Maltose. Molecular Pharmaceutics, 2020, 17, 3087-3105.	2.3	9
51	Molecular dynamics, viscoelastic properties and physical stability studies of a new amorphous dihydropyridine derivative with T-type calcium channel blocking activity. European Journal of Pharmaceutical Sciences, 2020, 141, 105083.	1.9	8
52	Enhancement of the Physical Stability of Amorphous Sildenafil in a Binary Mixture, with either a Plasticizing or Antiplasticizing Compound. Pharmaceutics, 2020, 12, 460.	2.0	8
53	New insight into relaxation dynamics of an epoxy/hydroxy functionalized polybutadiene from dielectric and mechanical spectroscopy studies. Colloid and Polymer Science, 2014, 292, 1853-1862.	1.0	7
54	Ternary Eutectic Ezetimibe–Simvastatin–Fenofibrate System and the Physical Stability of Its Amorphous Form. Molecular Pharmaceutics, 2021, 18, 3588-3600.	2.3	7

#	Article	IF	CITATIONS
55	Dynamic Properties of Glass-Formers Governed by the Frequency Dispersion of the Structural α-Relaxation: Examples from Prilocaine. Journal of Physical Chemistry B, 2015, 119, 12699-12707.	1.2	6
56	New limits of secondary Î ² -relaxation. Scientific Reports, 2017, 7, 43091.	1.6	6
57	Effect of electrostatic interactions on the relaxation dynamics of pharmaceutical eutectics. European Journal of Pharmaceutical Sciences, 2019, 134, 93-101.	1.9	6
58	Rheo-dielectric studies of the kinetics of shear-induced nematic alignment changes in itraconazole. Journal of Molecular Liquids, 2020, 302, 112494.	2.3	5
59	Tabletting solid dispersions of bicalutamide prepared using ball-milling or supercritical carbon dioxide: the interrelationship between phase transition and <i>in-vitro</i> dissolution. Pharmaceutical Development and Technology, 2020, 25, 1109-1117.	1.1	4
60	Pressure-assisted solvent- and catalyst-free production of well-defined poly(1-vinyl-2-pyrrolidone) for biomedical applications. RSC Advances, 2020, 10, 21593-21601.	1.7	4
61	High-Pressure Dielectric Studies—a Way to Experimentally Determine the Solubility of a Drug in the Polymer Matrix at Low Temperatures. Molecular Pharmaceutics, 2021, 18, 3050-3062.	2.3	4
62	The effect of high-pressure on organocatalyzed ROP of Î ³ -butyrolactone. Polymer, 2021, 233, 124166.	1.8	4
63	Broadband-dielectric-spectroscopy study of molecular dynamics in a mixture of itraconazole and glycerol in glassy, smectic- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>A</mml:mi></mml:mrow><td>ath\$</td><td>3</td></mml:math>	ath\$	3
64	Inhibition of celecoxib crystallization by mesoporous silica – Molecular dynamics studies leading to the discovery of the stabilization origin. European Journal of Pharmaceutical Sciences, 2022, 171, 106132.	1.9	3
65	How Does the CO2 in Supercritical State Affect the Properties of Drug-Polymer Systems, Dissolution Performance and Characteristics of Tablets Containing Bicalutamide?. Materials, 2020, 13, 2848.	1.3	2
66	Isochronal Conditionsâ€"The Key To Maintain the Given Solubility Limit, of a Small Molecule within the Polymer Matrix, at Elevated Pressure. Molecular Pharmaceutics, 2020, 17, 3730-3739.	2.3	2
67	Crystallization of Amorphous Pharmaceuticals at Ambient and Elevated Pressure Conditions. Advances in Dielectrics, 2020, , 55-87.	1,2	1
68	How Does Long-Term Storage Influence the Physical Stability and Dissolution of Bicalutamide from Solid Dispersions and Minitablets?. Processes, 2022, 10, 1002.	1.3	0