Mauricio Campos-Mora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8970042/publications.pdf

Version: 2024-02-01

933447 996975 16 285 10 15 citations g-index h-index papers 17 17 17 569 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	NK Cells Acquire CCR5 and CXCR4 by Trogocytosis in People Living with HIV-1. Vaccines, 2022, 10, 688.	4.4	4
2	Neuropilinâ€1 is present on Foxp3+ T regulatory cellâ€derived small extracellular vesicles and mediates immunity against skin transplantation. Journal of Extracellular Vesicles, 2022, 11, .	12.2	14
3	The ATP synthase inhibition induces an AMPK-dependent glycolytic switch of mesenchymal stem cells that enhances their immunotherapeutic potential. Theranostics, 2021, 11, 445-460.	10.0	19
4	Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells. Cells, 2020, 9, 1660.	4.1	28
5	T regulatory cells-derived extracellular vesicles and their contribution to the generation of immune tolerance. Journal of Leukocyte Biology, 2020, 108, 813-824.	3.3	21
6	CD4+Foxp3+T Regulatory Cells Promote Transplantation Tolerance by Modulating Effector CD4+ T Cells in a Neuropilin-1-Dependent Manner. Frontiers in Immunology, 2019, 10, 882.	4.8	25
7	Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Annals of the New York Academy of Sciences, 2018, 1417, 35-56.	3.8	24
8	Vitamin C Fosters the In Vivo Differentiation of Peripheral CD4+ Foxp3â^' T Cells into CD4+ Foxp3+ Regulatory T Cells but Impairs Their Ability to Prolong Skin Allograft Survival. Frontiers in Immunology, 2018, 9, 112.	4.8	22
9	IL-33 improves the suppressive capacity of human regulatory T cells. Trends in Transplantation, 2017, 10,	0.2	2
10	IL-33 enhances retinoic acid signaling on CD4+ T cells. Cytokine, 2016, 85, 120-122.	3.2	6
11	Exogenous interleukinâ€33 targets myeloidâ€derived suppressor cells and generates peripheryâ€induced Foxp3 ⁺ regulatory T cells in skinâ€transplanted mice. Immunology, 2015, 146, 81-88.	4.4	35
12	Alarmin' Immunologists: IL-33 as a Putative Target for Modulating T Cell-Dependent Responses. Frontiers in Immunology, 2015, 6, 232.	4.8	26
13	Retinaldehyde dehydrogenase activity is triggered during allograft rejection and it drives Th1/Th17 cytokine production. Immunobiology, 2015, 220, 769-774.	1.9	2
14	Rapamycin-conditioned dendritic cells activated with monophosphoryl lipid-A promote allograft acceptancein vivo. Immunotherapy, 2015, 7, 101-110.	2.0	7
15	Neuropilinâ€1 + regulatory T cells promote skin allograft survival and modulate effector CD4 + T cells phenotypic signature. Immunology and Cell Biology, 2015, 93, 113-119.	2.3	30
16	Neuropilin-1 in Transplantation Tolerance. Frontiers in Immunology, 2013, 4, 405.	4.8	20