
Eduardo B Azevedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8970032/publications.pdf Version: 2024-02-01

FOUARDO R AZEVEDO

#	Article	IF	CITATIONS
1	Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chemical Engineering Journal, 2009, 149, 215-220.	12.7	81
2	Photocatalytic/H2O2 treatment of oil field produced waters. Applied Catalysis B: Environmental, 2001, 29, 125-134.	20.2	70
3	TiO2-photocatalyzed degradation of phenol in saline media: lumped kinetics, intermediates, and acute toxicity. Applied Catalysis B: Environmental, 2004, 54, 165-173.	20.2	59
4	Photocatalysis as a tertiary treatment for petroleum refinery wastewaters. Brazilian Journal of Chemical Engineering, 2006, 23, 451-460.	1.3	42
5	The effect of cations (Na+, Mg2+, and Ca2+) on the activity and structure of nitrifying and denitrifying bacterial communities. Science of the Total Environment, 2019, 679, 279-287.	8.0	39
6	Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis. Applied Surface Science, 2021, 537, 147904.	6.1	37
7	Lumped kinetics and acute toxicity of intermediates in the ozonation of phenol in saline media. Journal of Hazardous Materials, 2006, 128, 182-191.	12.4	32
8	Photo-assisted electrochemical degradation of real textile wastewater. Water Science and Technology, 2010, 61, 491-498.	2.5	31
9	Removal of phenol in high salinity media by a hybrid process (activated sludge+photocatalysis). Separation and Purification Technology, 2008, 60, 142-146.	7.9	30
10	TiO2-Photocatalyzed degradation of phenol in saline media in an annular reactor: hydrodynamics, lumped kinetics, intermediates, and acute toxicity. Brazilian Journal of Chemical Engineering, 2009, 26, 75-87.	1.3	30
11	Degradation of NSAIDs by optimized photo-Fenton process using UV-LEDs at near-neutral pH. Journal of Water Process Engineering, 2020, 35, 101171.	5.6	27
12	Microwave-enhanced UV/H ₂ O ₂ degradation of an azo dye (tartrazine): optimization, colour removal, mineralization and ecotoxicity. Environmental Technology (United) Tj ETQq0 0 0 rg	gB Þ/ Øverl	oc b :10 Tf 50
13	Degradation of [D-Leu]-Microcystin-LR by solar heterogeneous photocatalysis (TiO2). Solar Energy, 2012, 86, 2746-2752.	6.1	23
14	Microwaves and their coupling to advanced oxidation processes: Enhanced performance in pollutants degradation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1056-1072.	1.7	23
15	Photocatalytic Decolorization of Commercial Acid Dyes using Solar Irradiation. Water, Air, and Soil Pollution, 2009, 204, 79-87.	2.4	19
16	Photo-assisted electrochemical degradation of the commercial herbicide atrazine. Water Science and Technology, 2010, 62, 2729-2736.	2.5	18
17	Brevibacterium luteolum biosurfactant: Production and structural characterization. Biocatalysis and Agricultural Biotechnology, 2018, 13, 160-167.	3.1	17
18	Establishing simultaneous nitrification and denitrification under continuous aeration for the treatment of multi-electrolytes saline wastewater. Bioresource Technology, 2019, 288, 121529.	9.6	17

Eduardo B Azevedo

#	Article	IF	CITATIONS
19	Degradation of hormones in tap water by heterogeneous solar TiO2-photocatalysis: Optimization, degradation products identification, and estrogenic activity removal. Journal of Environmental Chemical Engineering, 2021, 9, 106442.	6.7	16
20	Experimental-design-guided approach for the removal of atrazine by sono-electrochemical-UV-chlorine techniques. Environmental Technology (United Kingdom), 2019, 40, 430-440.	2.2	15
21	A comparison between bulk and supported TiO2 photocatalysts in the degradation of formic acid. Brazilian Journal of Chemical Engineering, 2007, 24, 185-192.	1.3	14
22	Perfluorooctane sulfonic acid (PFOS) degradation by optimized heterogeneous photocatalysis (TiO2/UV) using the response surface methodology (RSM). Journal of Water Process Engineering, 2021, 41, 101986.	5.6	13
23	Tandem anaerobic-aerobic degradation of ranitidine, diclofenac, and simvastatin in domestic sewage. Science of the Total Environment, 2020, 721, 137589.	8.0	11
24	Which route to take for diclofenac removal from water: Hydroxylation or direct photolysis?. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111879.	3.9	10
25	Degradação de corantes ácidos por processos oxidativos avançados usando um reator com disco rotatório de baixa velocidade. Quimica Nova, 2008, 31, 1353-1358.	0.3	7
26	COMBINING A SEQUENCING BATCH REACTOR WITH HETEROGENEOUS PHOTOCATALYSIS (TiO2/UV) FOR TREATING A PENCIL MANUFACTURER'S WASTEWATER. Brazilian Journal of Chemical Engineering, 2015, 32, 99-106.	1.3	7
27	The response surface methodology speeds up the search for optimal parameters in the photoinactivation of E. coli by photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2018, 22, 26-33.	2.6	7
28	Color removal of Remazol [®] dyebaths wastewater by UV/H ₂ O ₂ does not decrease TOC, BOD/COD, and toxicity of the effluent. Desalination and Water Treatment, 2014, 52, 1600-1607.	1.0	6
29	Otimização da produção de biodiesel a partir de óleo de coco babaçu com aquecimento por microondas. Ecletica Quimica, 2009, 34, 37-48.	0.5	6
30	Coupling Zero-Valent Iron and Fenton processes for degrading sulfamethazine, sulfathiazole, and norfloxacin. Journal of Environmental Chemical Engineering, 2021, 9, 105761.	6.7	5
31	Optimization of Microwave-Assisted Extraction of a Bioherbicide from <i>Canavalia ensiformis</i> Leaves. American Journal of Environmental Sciences, 2016, 12, 27-32.	0.5	4
32	Electrochemical degradation of aqueous alachlor and atrazine: products identification, lipophilicity, and ecotoxicity. Ecletica Quimica, 2019, 44, 12.	0.5	4
33	Treatment of the butadiene washing stream from a synthetic rubber industry and recovery of p-TBC. Water Science and Technology, 2006, 54, 17-21.	2.5	3
34	Treatment of an industrial stream containing vinylcyclohexene by the H2O2/UV process. Environmental Science and Pollution Research, 2016, 23, 19626-19633.	5.3	3
35	Preparation, characterization, and catalytic activity of a magnetic photocatalyst (Fe3O4@TiO2). , 0, 150, 136-145.		1
36	The use of polyacrylamides (PAMs) for removing natural organic matter (NOM) from ParaÃba do Sul River (Brazil). Journal of Water Supply: Research and Technology - AQUA, 2008, 57, 307-316.	1.4	0

#	Article	IF	CITATIONS
37	Heterogeneous Photocatalytic Degradation of Acid Dyes in Aqueous TiO2 Suspensions: Kinetics and Toxicity. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	0
38	Recovery of p-TBC from a butadiene washing stream in a pilot plant. Brazilian Journal of Chemical Engineering, 2009, 26, 635-640.	1.3	0
39	Modeling and simulating biogeochemical cycles: the BCS freeware. Biogeochemistry, 0, , 1.	3.5	0