
Darren Ficklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8970011/publications.pdf Version: 2024-02-01

NADDEN FICKLIN

#	Article	IF	CITATIONS
1	Hydrological Intensification Will Increase the Complexity of Water Resource Management. Earth's Future, 2022, 10, .	2.4	26
2	Confronting the water potential information gap. Nature Geoscience, 2022, 15, 158-164.	5.4	47
3	With warming, spring streamflow peaks are more coupled with vegetation greenâ€up than snowmelt in the northeastern United States. Hydrological Processes, 2022, 36, .	1.1	6
4	Choosing an arbitrary calibration period for hydrologic models: How much does it influence water balance simulations?. Hydrological Processes, 2021, 35, e14045.	1.1	20
5	Climate change impacts and strategies for adaptation for water resource management in Indiana. Climatic Change, 2021, 165, 1.	1.7	9
6	Mechanisms for engaging social systems in freshwater science research. Freshwater Science, 2021, 40, 245-251.	0.9	7
7	Coupling terrestrial and aquatic thermal processes for improving stream temperature modeling at the watershed scale. Journal of Hydrology, 2021, 603, 126983.	2.3	8
8	Incorporating rain-on-snow into the SWAT model results in more accurate simulations of hydrologic extremes. Journal of Hydrology, 2021, 603, 126972.	2.3	18
9	Bias Correction of Paleoclimatic Reconstructions: A New Look at 1,200+ Years of Upper Colorado River Flow. Geophysical Research Letters, 2020, 47, e2019GL086689.	1.5	23
10	Improving Hydrological Models With the Assimilation of Crowdsourced Data. Water Resources Research, 2020, 56, e2019WR026325.	1.7	19
11	A New Perspective on Terrestrial Hydrologic Intensity That Incorporates Atmospheric Water Demand. Geophysical Research Letters, 2019, 46, 8114-8124.	1.5	13
12	Hydrologic and thermal conditions occupied by a species within a single watershed predict the geographic extent of occurrence of freshwater fishes. Ecohydrology, 2019, 12, e2071.	1,1	3
13	Optimization of linear stream temperature model parameters in the soil and water assessment tool for the continental United States. Ecological Engineering, 2019, 127, 125-134.	1.6	6
14	Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environmental Research Letters, 2019, 14, 074023.	2.2	94
15	Multispecies conservation of freshwater fish assemblages in response to climate change in the southeastern United States. Diversity and Distributions, 2019, 25, 1388-1398.	1.9	18
16	Streamflow regimes and geologic conditions are more important than water temperature when projecting future crayfish distributions. Climatic Change, 2019, 154, 107-123.	1.7	12
17	Comparing three approaches to reconstructing streamflow using tree rings in the Wabash River basin in the Midwestern, US. Journal of Hydrology, 2019, 573, 829-840.	2.3	12
18	Hydrologic responses to projected climate change in ecologically diverse watersheds of the Gulf Coast, United States. International Journal of Climatology, 2019, 39, 2227-2243.	1.5	11

DARREN FICKLIN

#	Article	IF	CITATIONS
19	Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecology Letters, 2019, 22, 119-127.	3.0	106
20	Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling. Journal of Hydrology, 2018, 556, 645-659.	2.3	11
21	Incorporation of the equilibrium temperature approach in aÂSoil and Water Assessment Tool hydroclimatological stream temperature model. Hydrology and Earth System Sciences, 2018, 22, 2343-2357.	1.9	24
22	Modeling Landscape Change Effects on Stream Temperature Using the Soil and Water Assessment Tool. Water (Switzerland), 2018, 10, 1143.	1.2	7
23	The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology. Agricultural and Forest Meteorology, 2018, 263, 292-307.	1.9	29
24	Embedding co-production and addressing uncertainty in watershed modeling decision-support tools: Successes and challenges. Environmental Modelling and Software, 2018, 109, 368-379.	1.9	28
25	Natural and managed watersheds show similar responses to recent climate change. Proceedings of the United States of America, 2018, 115, 8553-8557.	3.3	72
26	Historic and projected changes in vapor pressure deficit suggest a continentalâ€scale drying of the United States atmosphere. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2061-2079.	1.2	234
27	Responding to a Groundwater Crisis: The Effects of Self-Imposed Economic Incentives. Journal of the Association of Environmental and Resource Economists, 2017, 4, 985-1023.	1.0	39
28	Projected hydrological changes in the North Carolina piedmont using bias-corrected North American Regional Climate Change Assessment Program (NARCCAP) data. Journal of Hydrology: Regional Studies, 2017, 12, 273-288.	1.0	3
29	Future projections of streamflow magnitude and timing differ across coastal watersheds of the western United States. International Journal of Climatology, 2017, 37, 4493-4508.	1.5	8
30	Climatic and physiographic controls of spatial variability in surface water balance over the contiguous <scp>U</scp> nited <scp>S</scp> tates using the <scp>B</scp> udyko relationship. Water Resources Research, 2017, 53, 7630-7643.	1.7	57
31	The Potential Impacts of Climate Change on Biodiversity in Flowing Freshwater Systems. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 111-133.	3.8	104
32	Changes in the Mechanisms Causing Rapid Drought Cessation in the Southeastern United States. Geophysical Research Letters, 2017, 44, 12,476.	1.5	15
33	MOESHA: A Genetic Algorithm for Automatic Calibration and Estimation of Parameter Uncertainty and Sensitivity of Hydrologic Models. Transactions of the ASABE, 2017, 60, 1259-1269.	1.1	9
34	Technical Note: The impact of spatial scale in bias correction of climate model output for hydrologic impact studies. Hydrology and Earth System Sciences, 2016, 20, 685-696.	1.9	7
35	Comparison of CMIP3 and CMIP5 projected hydrologic conditions over the Upper Colorado River Basin. International Journal of Climatology, 2016, 36, 3807-3818.	1.5	25
36	Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States. Hydrology Research, 2016, 47, 483-500.	1.1	25

DARREN FICKLIN

#	Article	IF	CITATIONS
37	The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 2016, 6, 1023-1027.	8.1	734
38	Estimating groundwater dynamics at a Colorado River floodplain site using historical hydrological data and climate information. Water Resources Research, 2016, 52, 1881-1898.	1.7	1
39	A hydropedological approach to quantifying groundwater recharge in various glacial settings of the midâ€continental USA. Hydrological Processes, 2016, 30, 1594-1608.	1.1	15
40	Projecting future winegrape yields using a combination of <i>Vitis vinifera</i> â€L. growth rings and soil moisture simulations, northern California, USA. Australian Journal of Grape and Wine Research, 2016, 22, 73-80.	1.0	8
41	Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds. Geophysical Research Letters, 2016, 43, 5079-5088.	1.5	92
42	The Influence of Climate Model Biases on Projections of Aridity and Drought. Journal of Climate, 2016, 29, 1269-1285.	1.2	36
43	A climatic deconstruction of recent drought trends in the United States. Environmental Research Letters, 2015, 10, 044009.	2.2	84
44	Assessment of three dimensionless measures of model performance. Environmental Modelling and Software, 2015, 73, 167-174.	1.9	59
45	21st century increases in the likelihood of extreme hydrologic conditions for the mountainous basins of the Southwestern United States. Journal of Hydrology, 2015, 529, 340-353.	2.3	30
46	Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Applied Geography, 2015, 63, 357-368.	1.7	113
47	Incorporation of the Penman–Monteith potential evapotranspiration method into a Palmer Drought Severity Index Tool. Computers and Geosciences, 2015, 85, 136-141.	2.0	23
48	Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers. Hydrology and Earth System Sciences, 2014, 18, 4897-4912.	1.9	55
49	SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds. Journal of Hydrology, 2014, 519, 2081-2090.	2.3	56
50	Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. Journal of Water and Climate Change, 2014, 5, 676-695.	1.2	68
51	Climate change sensitivity assessment of streamflow and agricultural pollutant transport in California's Central Valley using Latin hypercube sampling. Hydrological Processes, 2013, 27, 2666-2675.	1.1	25
52	Watershed modelling of hydrology and water quality in the Sacramento River watershed, California. Hydrological Processes, 2013, 27, 236-250.	1.1	46
53	Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of the Total Environment, 2013, 450-451, 72-82.	3.9	102
54	Effects of projected climate change on the hydrology in the Mono Lake Basin, California. Climatic Change, 2013, 116, 111-131.	1.7	60

DARREN FICKLIN

#	Article	IF	CITATIONS
55	Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resources Research, 2013, 49, 2765-2782.	1.7	129
56	A Comparison of the Curve Number and Green-Ampt Models in an Agricultural Watershed. Transactions of the ASABE, 2013, 56, 61-69.	1.1	39
57	Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin. PLoS ONE, 2013, 8, e71297.	1.1	108
58	Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resources Research, 2012, 48, .	1.7	89
59	Projections of 21st Century Sierra Nevada Local Hydrologic Flow Components Using an Ensemble of General Circulation Models ¹ . Journal of the American Water Resources Association, 2012, 48, 1104-1125.	1.0	30
60	Approaches of soil data aggregation for hydrologic simulations. Journal of Hydrology, 2012, 464-465, 467-476.	2.3	9
61	Impact of climate change on streamflow in the arid Shiyang River Basin of northwest China. Hydrological Processes, 2012, 26, 2733-2744.	1.1	61
62	Aggregation Strategies for SSURGO Data: Effects on SWAT Soil Inputs and Hydrologic Outputs. Soil Science Society of America Journal, 2011, 75, 1908-1921.	1.2	19
63	Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California. Environmental Pollution, 2010, 158, 223-234.	3.7	77
64	Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure. Agricultural Water Management, 2010, 97, 1039-1050.	2.4	40
65	Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology, 2009, 374, 16-29.	2.3	282
66	Spatio-temporal variations of soil nutrients influenced by an altered land tenure system in China. Geoderma, 2009, 152, 23-34.	2.3	79
67	Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Environmental Pollution, 2008, 156, 1171-1181.	3.7	76