
Soraia I Falcão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8969495/publications.pdf

Version: 2024-02-01

SORAIA L FALCÃEO

#	Article	IF	CITATIONS
1	Assessing the performance of analytical methods for propolis $\hat{a} \in \hat{a}$ A collaborative trial by the international honey commission. Journal of Apicultural Research, 2023, 62, 542-555.	0.7	4
2	Honeybee Venom Synergistically Enhances the Cytotoxic Effect of CNS Drugs in HT-29 Colon and MCF-7 Breast Cancer Cell Lines. Pharmaceutics, 2022, 14, 511.	2.0	17
3	Performance of green and conventional techniques for the optimal extraction of bioactive compounds in bee pollen. International Journal of Food Science and Technology, 2022, 57, 3490-3502.	1.3	11
4	Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. International Journal of Biological Macromolecules, 2022, 213, 486-497.	3.6	38
5	Description of the volatile fraction of Erica honey from the northwest of the Iberian Peninsula. Food Chemistry, 2021, 336, 127758.	4.2	28
6	From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends in Food Science and Technology, 2021, 109, 464-481.	7.8	55
7	Chemical profile from the head of Vespa velutina and V. crabro. Apidologie, 2021, 52, 548-560.	0.9	1
8	Assessment of Bioactive Compounds under Simulated Gastrointestinal Digestion of Bee Pollen and Bee Bread: Bioaccessibility and Antioxidant Activity. Antioxidants, 2021, 10, 651.	2.2	44
9	Assessment of the In Vivo and In Vitro Release of Chemical Compounds from Vespa velutina. Molecules, 2021, 26, 6769.	1.7	1
10	Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis mellifera intermissa. Antibiotics, 2021, 10, 1514.	1.5	4
11	Chemical composition, antioxidant activity, and diuretic effect of Moroccan fresh bee pollen in rats. Veterinary World, 2020, 13, 1251-1261.	0.7	23
12	In Vitro Interactions of Moroccan Propolis Phytochemical's on Human Tumor Cell Lines and Anti-Inflammatory Properties. Biomolecules, 2019, 9, 315.	1.8	17
13	A First Approach to the Chemical Composition and Antioxidant Potential of Guinea-Bissau Propolis. Natural Product Communications, 2019, 14, 1934578X1984413.	0.2	6
14	Standard methods for <i>Apis mellifera</i> propolis research. Journal of Apicultural Research, 2019, 58, 1-49.	0.7	173
15	Impact of traditional and modern beekeeping technologies on the quality of honey of Guinea-Bissau. Journal of Apicultural Research, 2018, 57, 406-417.	0.7	4
16	Phenolic composition and antioxidant activity assessment of southeastern and south Brazilian propolis. Journal of Apicultural Research, 2017, 56, 21-31.	0.7	25
17	Potentialities of beebread as a food supplement and source of nutraceuticals: Botanical origin, nutritional composition and antioxidant activity. Journal of Apicultural Research, 2017, 56, 219-230.	0.7	41
18	Harmonização de metodologias de análise da própolis. Revista De Ciências AgrÃ;rias, 2017, 40, 208-215.	0.2	2

Soraia I Falcão

#	Article	IF	CITATIONS
19	Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food and Chemical Toxicology, 2016, 94, 172-177.	1.8	89
20	A voltammetric tool for the evaluation of propolis antioxidant activity. European Food Research and Technology, 2016, 242, 1393-1401.	1.6	5
21	Chromatography as a Tool for Identification of Bioactive Compounds in Honeybee Products of Botanical Origin. , 2016, , 89-149.		1
22	Cytotoxicity of Portuguese Propolis: The Proximity of the <i>In Vitro</i> Doses for Tumor and Normal Cell Lines. BioMed Research International, 2014, 2014, 1-7.	0.9	29
23	In Vitro Evaluation of Portuguese Propolis and Floral Sources for Antiprotozoal, Antibacterial and Antifungal Activity. Phytotherapy Research, 2014, 28, 437-443.	2.8	46
24	A Proposal for Physicochemical Standards and Antioxidant Activity of Portuguese Propolis. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1729-1741.	0.8	36
25	Phenolic quantification and botanical origin of Portuguese propolis. Industrial Crops and Products, 2013, 49, 805-812.	2.5	63
26	Phenolic Profiling of Portuguese Propolis by LC–MS Spectrometry: Uncommon Propolis Rich in Flavonoid Glycosides. Phytochemical Analysis, 2013, 24, 309-318.	1.2	163
27	Oleuropein/ligstroside isomers and their derivatives in Portuguese olive mill wastewaters. Food Chemistry, 2011, 129, 291-296.	4.2	45
28	Phenolic characterization of Northeast Portuguese propolis: usual and unusual compounds. Analytical and Bioanalytical Chemistry, 2010, 396, 887-897.	1.9	149
29	Insights in the antioxidant activity of diarylamines from the 2,3-dimethylbenzo[b]thiophene through the redox profile. Journal of Electroanalytical Chemistry, 2009, 628, 43-47.	1.9	9
30	Effect of microwave heating with different exposure times on physical and chemical parameters of olive oil. Food and Chemical Toxicology, 2009, 47, 92-97.	1.8	69
31	Melanoma targeting with α-melanocyte stimulating hormone analogs labeled with fac-[99mTc(CO)3]+: effect of cyclization on tumor-seeking properties. Journal of Biological Inorganic Chemistry, 2008, 13, 449-459.	1.1	49
32	Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 2008, 111, 61-66.	4.2	205
33	Straightforward Method for the Preparation of Lysine-Based Double-Chained Anionic Surfactants. Synthetic Communications, 2008, 38, 2025-2036.	1.1	14
34	Self-Assembly in a Catanionic Mixture with an Aminoacid-Derived Surfactant:Â From Mixed Micelles to Spontaneous Vesicles. Journal of Physical Chemistry B, 2006, 110, 18158-18165.	1.2	60