Masahiko Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8969202/publications.pdf

Version: 2024-02-01

94269 118652 4,275 111 37 62 citations g-index h-index papers 117 117 117 3346 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coordination Chemistry Reviews, 2022, 456, 214278.	9.5	16
2	Beyond green with synthetic chlorophylls – Connecting structural features with spectral properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100513.	5 . 6	12
3	Absorption and Fluorescence Spectral Database of Chlorophylls and Analogues. Photochemistry and Photobiology, 2021, 97, 136-165.	1.3	58
4	A perspective on the redox properties of tetrapyrrole macrocycles. Physical Chemistry Chemical Physics, 2021, 23, 19130-19140.	1.3	15
5	The fluorescence quantum yield parameter in Förster resonance energy transfer (FRET)—Meaning, misperception, and molecular design. Chemical Physics Reviews, 2021, 2, 011302.	2.6	20
6	Comprehensive review of photophysical parameters (Î μ , Î $_{\parallel}$ f, Ï $_{\parallel}$ s) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) â \in " Critical benchmark molecules in photochemistry and photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 46, 100401.	5 . 6	90
7	Fluorescence Assay for Tolyporphins Amidst Abundant Chlorophyll in Crude Cyanobacterial Extracts. Photochemistry and Photobiology, 2021, , .	1.3	7
8	Electronic Structure and Excited-State Dynamics of Rylene–Tetrapyrrole Panchromatic Absorbers. Journal of Physical Chemistry A, 2021, 125, 7900-7919.	1.1	7
9	Bioconjugatable synthetic chlorins rendered water-soluble with three PEG-12 groups <i>via</i> click chemistry. Journal of Porphyrins and Phthalocyanines, 2020, 24, 362-378.	0.4	6
10	Photophysical Properties and Electronic Structure of Zinc(II) Porphyrins Bearing 0–4 <i>meso</i> -Phenyl Substituents: Zinc Porphine to Zinc Tetraphenylporphyrin (ZnTPP). Journal of Physical Chemistry A, 2020, 124, 7776-7794.	1.1	28
11	Analysis of Wikipedia pageviews to identify popular chemicals. , 2020, , .		2
12	Absorption and fluorescence spectra of organic compounds from 40 sources – archives, repositories, databases, and literature search engines. , 2020, , .		4
13	Crystal Structure of 1,9-Dibromo-5-phenyldipyrrin, Tetrapyrrole Synthesis Derivative and Free Base Ligand of BODIPY Building Blocks. X-ray Structure Analysis Online, 2020, 36, 21-22.	0.1	1
14	Heuristics from Modeling of Spectral Overlap in FÃ \P rster Resonance Energy Transfer (FRET). Journal of Chemical Information and Modeling, 2019, 59, 652-667.	2.5	22
15	Developing a user community in the photosciences: a website for spectral data and PhotochemCAD. , 2019, , .		4
16	Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in Photochem <scp>CAD</scp> . Photochemistry and Photobiology, 2018, 94, 290-327.	1,3	306
17	PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Multiple Spectral Databases. Photochemistry and Photobiology, 2018, 94, 277-289.	1.3	87
18	Red and near-infrared fluorophores inspired by chlorophylls: consideration of practical brightness in multicolor flow cytometry and biomedical sciences. , 2018, , .		1

#	Article	IF	CITATIONS
19	The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles. Origins of Life and Evolution of Biospheres, 2017, 47, 93-119.	0.8	7
20	Hydrogen Evolution Catalysis by a Sparsely Substituted Cobalt Chlorin. ACS Catalysis, 2017, 7, 3597-3606.	5.5	56
21	Synthesis, photophysics and electronic structure of oxobacteriochlorins. New Journal of Chemistry, 2017, 41, 3732-3744.	1.4	16
22	Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins. Chemical Reviews, 2017, 117, 344-535.	23.0	250
23	Synthesis and Spectral Properties of meso-Arylbacteriochlorins, Including Insights into Essential Motifs of their Hydrodipyrrin Precursors. Molecules, 2017, 22, 634.	1.7	7
24	Scope and limitations of two model prebiotic routes to tetrapyrrole macrocycles. New Journal of Chemistry, 2016, 40, 7445-7455.	1.4	4
25	Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four <i>meso</i> -Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. Journal of Physical Chemistry A, 2016, 120, 9719-9731.	1.1	75
26	Complexity in structure-directed prebiotic chemistry. Reaction bifurcation from a \hat{l}^2 -diketone in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6434-6440.	1.4	3
27	Integration of Cyanine, Merocyanine and Styryl Dye Motifs with Synthetic Bacteriochlorins. Photochemistry and Photobiology, 2016, 92, 111-125.	1.3	7
28	Synthesis of diverse acyclic precursors to pyrroles for studies of prebiotic routes to tetrapyrrole macrocycles. New Journal of Chemistry, 2016, 40, 8786-8808.	1.4	9
29	Bioconjugatable, PEGylated hydroporphyrins for photochemistry and photomedicine. Narrow-band, near-infrared-emitting bacteriochlorins. New Journal of Chemistry, 2016, 40, 7750-7767.	1.4	15
30	Complexity in structure-directed prebiotic chemistry. Unexpected compositional richness from competing reactants in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6421-6433.	1.4	8
31	Photophysical Properties and Electronic Structure of Chlorin-Imides: Bridging the Gap between Chlorins and Bacteriochlorins. Journal of Physical Chemistry B, 2015, 119, 7503-7515.	1.2	27
32	Progress towards synthetic chlorins with graded polarity, conjugatable substituents, and wavelength tunability. Journal of Porphyrins and Phthalocyanines, 2015, 19, 547-572.	0.4	10
33	Elaboration of an unexplored substitution site in synthetic bacteriochlorins. Journal of Porphyrins and Phthalocyanines, 2015, 19, 887-902.	0.4	6
34	Near-infrared tunable bacteriochlorins equipped for bioorthogonal labeling. New Journal of Chemistry, 2015, 39, 4534-4550.	1.4	13
35	Extending the Short and Long Wavelength Limits of Bacteriochlorin Near-Infrared Absorption via Dioxo- and Bisimide-Functionalization. Journal of Physical Chemistry B, 2015, 119, 4382-4395.	1.2	55
36	Paley's watchmaker analogy and prebiotic synthetic chemistry in surfactant assemblies. Formaldehyde scavenging by pyrroles leading to porphyrins as a case study. Organic and Biomolecular Chemistry, 2015, 13, 10025-10031.	1.5	12

#	Article	IF	CITATIONS
37	Complexity in structure-directed prebiotic chemistry. Effect of a defective competing reactant in tetrapyrrole formation. New Journal of Chemistry, 2015, 39, 8273-8281.	1.4	5
38	Photophysical properties and electronic structure of retinylideneâ€"chlorinâ€"chalcones and analogues. Photochemical and Photobiological Sciences, 2014, 13, 634-650.	1.6	12
39	NMR spectral properties of 16 synthetic bacteriochlorins with site-specific 13C or 15N substitution. Journal of Porphyrins and Phthalocyanines, 2014, 18, 433-456.	0.4	4
40	Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture. Photosynthesis Research, 2014, 121, 35-48.	1.6	32
41	Statistical considerations on the formation of circular photosynthetic light-harvesting complexes from Rhodopseudomonas palustris. Photosynthesis Research, 2014, 121, 49-60.	1.6	9
42	Aqueousâ \in "membrane partitioning of \hat{l}^2 -substituted porphyrins encompassing diverse polarity. New Journal of Chemistry, 2013, 37, 1087.	1.4	16
43	Enumeration of Virtual Libraries of Combinatorial Modular Macrocyclic (Bracelet, Necklace) Architectures and Their Linear Counterparts. Journal of Chemical Information and Modeling, 2013, 53, 2203-2216.	2.5	7
44	Synthesis and photophysical properties of chlorins bearing 0-4 distinct meso-substituents. Photochemical and Photobiological Sciences, 2013, 12, 2089-2109.	1.6	29
45	Expanded combinatorial formation of porphyrin macrocycles in aqueous solution containing vesicles. A prebiotic model. New Journal of Chemistry, 2013, 37, 1073.	1.4	19
46	Primordial Oil Slick and the Formation of Hydrophobic Tetrapyrrole Macrocycles. Astrobiology, 2012, 12, 1055-1068.	1.5	19
47	Diversity, isomer composition, and design of combinatorial libraries of tetrapyrrole macrocycles. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1-13.	0.4	24
48	Competing Knorr and Fischer–Fink pathways to pyrroles in neutral aqueous solution. Tetrahedron, 2012, 68, 6957-6967.	1.0	18
49	Synthesis and Physicochemical Properties of Metallobacteriochlorins. Inorganic Chemistry, 2012, 51, 9443-9464.	1.9	89
50	Enumeration of Isomers of Substituted Tetrapyrrole Macrocycles: From Classical Problems in Biology to Modern Combinatorial Libraries. Handbook of Porphyrin Science, 2012, , 1-80.	0.3	5
51	A tandem combinatorial model for the prebiogenesis of diverse tetrapyrrole macrocycles. New Journal of Chemistry, 2012, 36, 1057.	1.4	24
52	Self-organization of tetrapyrrole constituents to give a photoactive protocell. Chemical Science, 2012, 3, 1963.	3.7	27
53	Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants. New Journal of Chemistry, 2011, 35, 65-75.	1.4	36
54	Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments. Journal of Physical Chemistry B, 2011, 115, 10801-10816.	1.2	93

#	Article	IF	CITATIONS
55	Structural characteristics that make chlorophylls green: interplay of hydrocarbon skeleton and substituents. New Journal of Chemistry, 2011, 35, 76-88.	1.4	40
56	Virtual Libraries of Tetrapyrrole Macrocycles. Combinatorics, Isomers, Product Distributions, and Data Mining. Journal of Chemical Information and Modeling, 2011, 51, 2233-2247.	2.5	23
57	Encoding isotopic watermarks in molecular electronic materials as an anti-counterfeiting strategy: Application to porphyrins for information storage. Journal of Porphyrins and Phthalocyanines, 2011, 15, 505-516.	0.4	8
58	Structural studies of sparsely substituted synthetic chlorins and phorbines establish benchmarks for changes in the ligand core and framework of chlorophyll macrocycles. Journal of Molecular Structure, 2010, 979, 27-45.	1.8	21
59	Synthesis of oligo(p-phenylene)-linked dyads containing free base, zinc(II) or thallium(III) porphyrins for studies in artificial photosynthesis. Tetrahedron, 2010, 66, 5549-5565.	1.0	48
60	Probing the Rate of Hole Transfer in Oxidized Porphyrin Dyads Using Thallium Hyperfine Clocks. Journal of the American Chemical Society, 2010, 132, 12121-12132.	6.6	8
61	Probing the Rate of Hole Transfer in Oxidized Synthetic Chlorin Dyads via Site-Specific ¹³ C-Labeling. Journal of Organic Chemistry, 2010, 75, 3193-3202.	1.7	6
62	Activation Energies for Oxidation of Porphyrin Monolayers Anchored to Au(111). Langmuir, 2010, 26, 15718-15721.	1.6	4
63	Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution. Origins of Life and Evolution of Biospheres, 2009, 39, 495-515.	0.8	40
64	Probing Groundâ€state Hole Transfer Between Equivalent, Electrochemically Inaccessible States in Multiporphyrin Arrays Using Timeâ€resolved Optical Spectroscopy. Photochemistry and Photobiology, 2009, 85, 693-704.	1.3	9
65	Regioselective Bromination Tactics in the de Novo Synthesis of Chlorophyll <i>b</i> Analogues. Journal of Organic Chemistry, 2009, 74, 3237-3247.	1.7	28
66	Excited-State Energy Flow in Phenylene-Linked Multiporphyrin Arrays. Journal of Physical Chemistry B, 2009, 113, 8011-8019.	1.2	17
67	Synthesis and Photochemical Properties of 12-Substituted versus 13-Substituted Chlorins. Journal of Organic Chemistry, 2009, 74, 5276-5289.	1.7	32
68	Linker Dependence of Energy and Hole Transfer in Neutral and Oxidized Multiporphyrin Arrays. Journal of Physical Chemistry B, 2009, 113, 16483-16493.	1.2	28
69	Refined syntheses of hydrodipyrrin precursors to chlorin and bacteriochlorin building blocks. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1098-1110.	0.4	39
70	Accessing the near-infrared spectral region with stable, synthetic, wavelength-tunable bacteriochlorins. New Journal of Chemistry, 2008, 32, 947.	1.4	120
71	Determination of Ground-State Hole-Transfer Rates Between Equivalent Sites in Oxidized Multiporphyrin Arrays Using Time-Resolved Optical Spectroscopy. Journal of the American Chemical Society, 2008, 130, 15636-15648.	6.6	21
72	Comparison of Electron-Transfer Rates for Metal- versus Ring-Centered Redox Processes of Porphyrins in Monolayers on Au(111). Langmuir, 2008, 24, 12047-12053.	1.6	8

#	Article	IF	Citations
73	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 2: Redox Properties, Optical Spectra and Electronic Structure. Photochemistry and Photobiology, 2007, 83, 1125-1143.	1.3	77
74	Regioselective 15-Bromination and Functionalization of a Stable Synthetic Bacteriochlorin. Journal of Organic Chemistry, 2007, 72, 5350-5357.	1.7	68
75	Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15464-15478.	1.5	98
76	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 1: Synthesis. Tetrahedron, 2007, 63, 3826-3839.	1.0	56
77	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 3: Spectral and structural properties. Tetrahedron, 2007, 63, 3850-3863.	1.0	63
78	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 2: Derivatization. Tetrahedron, 2007, 63, 3840-3849.	1.0	48
79	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 1: Synthesis, Vibrational Properties and Excited-state Decay Characteristics. Photochemistry and Photobiology, 2007, 83, 1110-1124.	1.3	68
80	Synthesis and Photophysical Characterization of Porphyrin, Chlorin and Bacteriochlorin Molecules Bearing Tethers for Surface Attachment. Photochemistry and Photobiology, 2007, 83, 1513-1528.	1.3	32
81	Alkylthio Unit as an α-Pyrrole Protecting Group for Use in Dipyrromethane Synthesis. Journal of Organic Chemistry, 2006, 71, 903-910.	1.7	59
82	Synthetic Chlorins Bearing Auxochromes at the 3- and 13-Positions. Journal of Organic Chemistry, 2006, 71, 4092-4102.	1.7	92
83	A New Route for Installing the Isocyclic Ring on Chlorins Yielding 131-Oxophorbines. Journal of Organic Chemistry, 2006, 71, 7049-7052.	1.7	43
84	Masked Imidazolylâ^'Dipyrromethanes in the Synthesis of Imidazole-Substituted Porphyrins. Journal of Organic Chemistry, 2006, 71, 8807-8817.	1.7	50
85	1,9-Bis(N,N-dimethylaminomethyl)dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents. Tetrahedron, 2005, 61, 10291-10302.	1.0	42
86	Introduction of a Third Meso Substituent into 5,10-Diaryl Chlorins and Oxochlorins. Journal of Organic Chemistry, 2005, 70, 275-285.	1.7	56
87	Refined Synthesis of 2,3,4,5-Tetrahydro-1,3,3-trimethyldipyrrin, a Deceptively Simple Precursor to Hydroporphyrins. Organic Process Research and Development, 2005, 9, 651-659.	1.3	54
88	Imine-substituted dipyrromethanes in the synthesis of porphyrins bearing one or two <i>meso</i> substituents. Journal of Porphyrins and Phthalocyanines, 2005, 09, 554-574.	0.4	41
89	PhotochemCAD 2: A Refined Program with Accompanying Spectral Databases for Photochemical Calculations [¶] . Photochemistry and Photobiology, 2005, 81, 212-213.	1.3	58
90	PhotochemCAD 2: A Refined Program with Accompanying Spectral Databases for Photochemical Calculations¶. Photochemistry and Photobiology, 2005, 81, 212.	1.3	202

#	Article	IF	Citations
91	A Tin-Complexation Strategy for Use with Diverse Acylation Methods in the Preparation of 1,9-Diacyldipyrromethanes ChemInform, 2004, 35, no.	0.1	0
92	Synthesis of phenylethyne-linked porphyrin dyads. Tetrahedron, 2004, 60, 2011-2023.	1.0	62
93	A Tin-Complexation Strategy for Use with Diverse Acylation Methods in the Preparation of 1,9-Diacyldipyrromethanes. Journal of Organic Chemistry, 2004, 69, 765-777.	1.7	78
94	Photophysical Properties of Phenylethyne-Linked Porphyrin and Oxochlorin Dyads. Journal of Physical Chemistry B, 2004, 108, 8190-8200.	1.2	37
95	PhotochemCAD 2. A Refined Program with Accompanying Spectral Database for Photochemical Calculations. Photochemistry and Photobiology, 2004, 81, 212-3.	1.3	36
96	Comparison of Excited-State Energy Transfer in Arrays of Hydroporphyrins (Chlorins, Oxochlorins) versus Porphyrins:Â Rates, Mechanisms, and Design Criteria. Journal of the American Chemical Society, 2003, 125, 13461-13470.	6.6	37
97	A Scalable Synthesis of Meso-Substituted Dipyrromethanes. Organic Process Research and Development, 2003, 7, 799-812.	1.3	284
98	Synthesis and Excited-State Photodynamics of Perylene-Bis(Imide)-Oxochlorin Dyads. A Charge-Separation Motif. Journal of Physical Chemistry B, 2003, 107, 3443-3454.	1.2	44
99	Synthesis and Electronic Properties of Regioisomerically Pure Oxochlorins. Journal of Organic Chemistry, 2002, 67, 7329-7342.	1.7	59
100	Synthesis of Meso-Substituted Chlorins via Tetrahydrobilene-a Intermediates. Journal of Organic Chemistry, 2001, 66, 7342-7354.	1.7	86
101	Synthesis of 8,16-dimethyl- and 8,16-dimethoxy-5,13-di-t-butyl[2.2]metacyclophane-1,2,9,10-tetraone. Tetrahedron Letters, 1999, 40, 4691-4692.	0.7	2
102	Layered [3.3]Orthocyclophane Tricarbonylchromium Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1999, 625, 1249-1251.	0.6	3
103	Thieno[3.3]orthocyclophanes: preparations and structures. New Journal of Chemistry, 1999, 23, 675-678.	1.4	6
104	Novel rearrangement of conformationally restrained [3.3]orthocyclophanes. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2101-2108.	0.9	1
105	Radiosynthesis of [18F]N-(4-phenylbutyl)-4-(4-fluorobenzoyl)piperidine for studying serotonin 5-HT2a receptors. Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 41, 941-949.	0.5	4
106	Quadruple Decker [3.3][3.3][3.3]Orthocyclophane Acetalâ€"An Orthocyclophane Ladder. Angewandte Chemie - International Edition, 1998, 37, 2532-2534.	7.2	26
107	Benzo[3.3]benzo[3.3]benzo- and naphtho[3.3]benzo[3.3]naphtho-orthocyclophane bis(alcohol)s. Preparations and structures. Tetrahedron, 1998, 54, 5171-5186.	1.0	6
108	The Study of π–π Interaction in Layered [3.3]Orthocyclophanes. Charge-Transfer Complexes of [3.3]Orthocyclophanes with Tetracyanoethylene. Bulletin of the Chemical Society of Japan, 1998, 71, 2661-2668.	2.0	14

#	Article	IF	CITATIONS
109	Conformational Analysis of Spirocyclopropane- and Spirooxirane-annelated Dibenzobicyclo[4.4.1]undecanes by 1H NMR Spectroscopy and X-Ray Crystallography. Journal of Chemical Research Synopses, 1997, , 48-49.	0.3	4
110	Bisacetals of aromatic ring-annelated . [3.3][3.3]Orthocyclophanes with triple-layered benzo/benzo/and naphtho/benzo/naphtho-system. Tetrahedron, 1997, 53, 3015-3026.	1.0	9
111	Tolyporphins A–R, unusual tetrapyrrole macrocycles in a cyanobacterium from Micronesia, assessed quantitatively from the culture HT-58-2. New Journal of Chemistry, 0, , .	1.4	14