List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8969202/publications.pdf Version: 2024-02-01

x
6
hors
; ;

#	Article	IF	CITATIONS
1	Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in Photochem <scp>CAD</scp> . Photochemistry and Photobiology, 2018, 94, 290-327.	2.5	306
2	A Scalable Synthesis of Meso-Substituted Dipyrromethanes. Organic Process Research and Development, 2003, 7, 799-812.	2.7	284
3	Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins. Chemical Reviews, 2017, 117, 344-535.	47.7	250
4	PhotochemCAD 2: A Refined Program with Accompanying Spectral Databases for Photochemical Calculations¶. Photochemistry and Photobiology, 2005, 81, 212.	2.5	202
5	Accessing the near-infrared spectral region with stable, synthetic, wavelength-tunable bacteriochlorins. New Journal of Chemistry, 2008, 32, 947.	2.8	120
6	Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15464-15478.	3.1	98
7	Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments. Journal of Physical Chemistry B, 2011, 115, 10801-10816.	2.6	93
8	Synthetic Chlorins Bearing Auxochromes at the 3- and 13-Positions. Journal of Organic Chemistry, 2006, 71, 4092-4102.	3.2	92
9	Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 46, 100401.	11.6	90
10	Synthesis and Physicochemical Properties of Metallobacteriochlorins. Inorganic Chemistry, 2012, 51, 9443-9464.	4.0	89
11	PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Multiple Spectral Databases. Photochemistry and Photobiology, 2018, 94, 277-289.	2.5	87
12	Synthesis of Meso-Substituted Chlorins via Tetrahydrobilene-a Intermediates. Journal of Organic Chemistry, 2001, 66, 7342-7354.	3.2	86
13	A Tin-Complexation Strategy for Use with Diverse Acylation Methods in the Preparation of 1,9-Diacyldipyrromethanes. Journal of Organic Chemistry, 2004, 69, 765-777.	3.2	78
14	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 2: Redox Properties, Optical Spectra and Electronic Structure. Photochemistry and Photobiology, 2007, 83, 1125-1143.	2.5	77
15	Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four <i>meso</i> -Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. Journal of Physical Chemistry A, 2016, 120, 9719-9731.	2.5	75
16	Regioselective 15-Bromination and Functionalization of a Stable Synthetic Bacteriochlorin. Journal of Organic Chemistry, 2007, 72, 5350-5357.	3.2	68
17	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 1: Synthesis, Vibrational Properties and Excited-state Decay Characteristics. Photochemistry and Photobiology, 2007, 83, 1110-1124.	2.5	68
18	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 3: Spectral and structural properties. Tetrahedron, 2007, 63, 3850-3863.	1.9	63

#	Article	IF	CITATIONS
19	Synthesis of phenylethyne-linked porphyrin dyads. Tetrahedron, 2004, 60, 2011-2023.	1.9	62
20	Synthesis and Electronic Properties of Regioisomerically Pure Oxochlorins. Journal of Organic Chemistry, 2002, 67, 7329-7342.	3.2	59
21	Alkylthio Unit as an α-Pyrrole Protecting Group for Use in Dipyrromethane Synthesis. Journal of Organic Chemistry, 2006, 71, 903-910.	3.2	59
22	PhotochemCAD 2: A Refined Program with Accompanying Spectral Databases for Photochemical Calculations [¶] . Photochemistry and Photobiology, 2005, 81, 212-213.	2.5	58
23	Absorption and Fluorescence Spectral Database of Chlorophylls and Analogues. Photochemistry and Photobiology, 2021, 97, 136-165.	2.5	58
24	Introduction of a Third Meso Substituent into 5,10-Diaryl Chlorins and Oxochlorins. Journal of Organic Chemistry, 2005, 70, 275-285.	3.2	56
25	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 1: Synthesis. Tetrahedron, 2007, 63, 3826-3839.	1.9	56
26	Hydrogen Evolution Catalysis by a Sparsely Substituted Cobalt Chlorin. ACS Catalysis, 2017, 7, 3597-3606.	11.2	56
27	Extending the Short and Long Wavelength Limits of Bacteriochlorin Near-Infrared Absorption via Dioxo- and Bisimide-Functionalization. Journal of Physical Chemistry B, 2015, 119, 4382-4395.	2.6	55
28	Refined Synthesis of 2,3,4,5-Tetrahydro-1,3,3-trimethyldipyrrin, a Deceptively Simple Precursor to Hydroporphyrins. Organic Process Research and Development, 2005, 9, 651-659.	2.7	54
29	Masked Imidazolylâ^'Dipyrromethanes in the Synthesis of Imidazole-Substituted Porphyrins. Journal of Organic Chemistry, 2006, 71, 8807-8817.	3.2	50
30	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 2: Derivatization. Tetrahedron, 2007, 63, 3840-3849.	1.9	48
31	Synthesis of oligo(p-phenylene)-linked dyads containing free base, zinc(II) or thallium(III) porphyrins for studies in artificial photosynthesis. Tetrahedron, 2010, 66, 5549-5565.	1.9	48
32	Synthesis and Excited-State Photodynamics of Perylene-Bis(Imide)-Oxochlorin Dyads. A Charge-Separation Motif. Journal of Physical Chemistry B, 2003, 107, 3443-3454.	2.6	44
33	A New Route for Installing the Isocyclic Ring on Chlorins Yielding 131-Oxophorbines. Journal of Organic Chemistry, 2006, 71, 7049-7052.	3.2	43
34	1,9-Bis(N,N-dimethylaminomethyl)dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents. Tetrahedron, 2005, 61, 10291-10302.	1.9	42
35	Imine-substituted dipyrromethanes in the synthesis of porphyrins bearing one or two <i>meso</i> substituents. Journal of Porphyrins and Phthalocyanines, 2005, 09, 554-574.	0.8	41
36	Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution. Origins of Life and Evolution of Biospheres, 2009, 39, 495-515.	1.9	40

#	Article	IF	CITATIONS
37	Structural characteristics that make chlorophylls green: interplay of hydrocarbon skeleton and substituents. New Journal of Chemistry, 2011, 35, 76-88.	2.8	40
38	Refined syntheses of hydrodipyrrin precursors to chlorin and bacteriochlorin building blocks. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1098-1110.	0.8	39
39	Comparison of Excited-State Energy Transfer in Arrays of Hydroporphyrins (Chlorins, Oxochlorins) versus Porphyrins:Â Rates, Mechanisms, and Design Criteria. Journal of the American Chemical Society, 2003, 125, 13461-13470.	13.7	37
40	Photophysical Properties of Phenylethyne-Linked Porphyrin and Oxochlorin Dyads. Journal of Physical Chemistry B, 2004, 108, 8190-8200.	2.6	37
41	Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants. New Journal of Chemistry, 2011, 35, 65-75.	2.8	36
42	PhotochemCAD 2. A Refined Program with Accompanying Spectral Database for Photochemical Calculations. Photochemistry and Photobiology, 2004, 81, 212-3.	2.5	36
43	Synthesis and Photophysical Characterization of Porphyrin, Chlorin and Bacteriochlorin Molecules Bearing Tethers for Surface Attachment. Photochemistry and Photobiology, 2007, 83, 1513-1528.	2.5	32
44	Synthesis and Photochemical Properties of 12-Substituted versus 13-Substituted Chlorins. Journal of Organic Chemistry, 2009, 74, 5276-5289.	3.2	32
45	Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture. Photosynthesis Research, 2014, 121, 35-48.	2.9	32
46	Synthesis and photophysical properties of chlorins bearing 0-4 distinct meso-substituents. Photochemical and Photobiological Sciences, 2013, 12, 2089-2109.	2.9	29
47	Regioselective Bromination Tactics in the de Novo Synthesis of Chlorophyll <i>b</i> Analogues. Journal of Organic Chemistry, 2009, 74, 3237-3247.	3.2	28
48	Linker Dependence of Energy and Hole Transfer in Neutral and Oxidized Multiporphyrin Arrays. Journal of Physical Chemistry B, 2009, 113, 16483-16493.	2.6	28
49	Photophysical Properties and Electronic Structure of Zinc(II) Porphyrins Bearing 0–4 <i>meso</i> -Phenyl Substituents: Zinc Porphine to Zinc Tetraphenylporphyrin (ZnTPP). Journal of Physical Chemistry A, 2020, 124, 7776-7794.	2.5	28
50	Self-organization of tetrapyrrole constituents to give a photoactive protocell. Chemical Science, 2012, 3, 1963.	7.4	27
51	Photophysical Properties and Electronic Structure of Chlorin-Imides: Bridging the Gap between Chlorins and Bacteriochlorins. Journal of Physical Chemistry B, 2015, 119, 7503-7515.	2.6	27
52	Quadruple Decker [3.3][3.3][3.3]Orthocyclophane Acetal—An Orthocyclophane Ladder. Angewandte Chemie - International Edition, 1998, 37, 2532-2534.	13.8	26
53	Diversity, isomer composition, and design of combinatorial libraries of tetrapyrrole macrocycles. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1-13.	0.8	24
54	A tandem combinatorial model for the prebiogenesis of diverse tetrapyrrole macrocycles. New Journal of Chemistry, 2012, 36, 1057.	2.8	24

#	Article	IF	CITATIONS
55	Virtual Libraries of Tetrapyrrole Macrocycles. Combinatorics, Isomers, Product Distributions, and Data Mining. Journal of Chemical Information and Modeling, 2011, 51, 2233-2247.	5.4	23
56	Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET). Journal of Chemical Information and Modeling, 2019, 59, 652-667.	5.4	22
57	Determination of Ground-State Hole-Transfer Rates Between Equivalent Sites in Oxidized Multiporphyrin Arrays Using Time-Resolved Optical Spectroscopy. Journal of the American Chemical Society, 2008, 130, 15636-15648.	13.7	21
58	Structural studies of sparsely substituted synthetic chlorins and phorbines establish benchmarks for changes in the ligand core and framework of chlorophyll macrocycles. Journal of Molecular Structure, 2010, 979, 27-45.	3.6	21
59	The fluorescence quantum yield parameter in Förster resonance energy transfer (FRET)—Meaning, misperception, and molecular design. Chemical Physics Reviews, 2021, 2, 011302.	5.7	20
60	Primordial Oil Slick and the Formation of Hydrophobic Tetrapyrrole Macrocycles. Astrobiology, 2012, 12, 1055-1068.	3.0	19
61	Expanded combinatorial formation of porphyrin macrocycles in aqueous solution containing vesicles. A prebiotic model. New Journal of Chemistry, 2013, 37, 1073.	2.8	19
62	Competing Knorr and Fischer–Fink pathways to pyrroles in neutral aqueous solution. Tetrahedron, 2012, 68, 6957-6967.	1.9	18
63	Excited-State Energy Flow in Phenylene-Linked Multiporphyrin Arrays. Journal of Physical Chemistry B, 2009, 113, 8011-8019.	2.6	17
64	Aqueous–membrane partitioning of β-substituted porphyrins encompassing diverse polarity. New Journal of Chemistry, 2013, 37, 1087.	2.8	16
65	Synthesis, photophysics and electronic structure of oxobacteriochlorins. New Journal of Chemistry, 2017, 41, 3732-3744.	2.8	16
66	Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coordination Chemistry Reviews, 2022, 456, 214278.	18.8	16
67	Bioconjugatable, PEGylated hydroporphyrins for photochemistry and photomedicine. Narrow-band, near-infrared-emitting bacteriochlorins. New Journal of Chemistry, 2016, 40, 7750-7767.	2.8	15
68	A perspective on the redox properties of tetrapyrrole macrocycles. Physical Chemistry Chemical Physics, 2021, 23, 19130-19140.	2.8	15
69	The Study of π–΀ Interaction in Layered [3.3]Orthocyclophanes. Charge-Transfer Complexes of [3.3]Orthocyclophanes with Tetracyanoethylene. Bulletin of the Chemical Society of Japan, 1998, 71, 2661-2668.	3.2	14
70	Tolyporphins A–R, unusual tetrapyrrole macrocycles in a cyanobacterium from Micronesia, assessed quantitatively from the culture HT-58-2. New Journal of Chemistry, 0, , .	2.8	14
71	Near-infrared tunable bacteriochlorins equipped for bioorthogonal labeling. New Journal of Chemistry, 2015, 39, 4534-4550.	2.8	13
72	Photophysical properties and electronic structure of retinylidene—chlorin—chalcones and analogues. Photochemical and Photobiological Sciences, 2014, 13, 634-650.	2.9	12

#	Article	IF	CITATIONS
73	Paley's watchmaker analogy and prebiotic synthetic chemistry in surfactant assemblies. Formaldehyde scavenging by pyrroles leading to porphyrins as a case study. Organic and Biomolecular Chemistry, 2015, 13, 10025-10031.	2.8	12
74	Beyond green with synthetic chlorophylls – Connecting structural features with spectral properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100513.	11.6	12
75	Progress towards synthetic chlorins with graded polarity, conjugatable substituents, and wavelength tunability. Journal of Porphyrins and Phthalocyanines, 2015, 19, 547-572.	0.8	10
76	Bisacetals of aromatic ring-annelated . [3.3][3.3]Orthocyclophanes with triple-layered benzo/benzo/benzo- and naphtho/benzo/naphtho-system. Tetrahedron, 1997, 53, 3015-3026.	1.9	9
77	Probing Groundâ€state Hole Transfer Between Equivalent, Electrochemically Inaccessible States in Multiporphyrin Arrays Using Timeâ€resolved Optical Spectroscopy. Photochemistry and Photobiology, 2009, 85, 693-704.	2.5	9
78	Statistical considerations on the formation of circular photosynthetic light-harvesting complexes from Rhodopseudomonas palustris. Photosynthesis Research, 2014, 121, 49-60.	2.9	9
79	Synthesis of diverse acyclic precursors to pyrroles for studies of prebiotic routes to tetrapyrrole macrocycles. New Journal of Chemistry, 2016, 40, 8786-8808.	2.8	9
80	Comparison of Electron-Transfer Rates for Metal- versus Ring-Centered Redox Processes of Porphyrins in Monolayers on Au(111). Langmuir, 2008, 24, 12047-12053.	3.5	8
81	Probing the Rate of Hole Transfer in Oxidized Porphyrin Dyads Using Thallium Hyperfine Clocks. Journal of the American Chemical Society, 2010, 132, 12121-12132.	13.7	8
82	Encoding isotopic watermarks in molecular electronic materials as an anti-counterfeiting strategy: Application to porphyrins for information storage. Journal of Porphyrins and Phthalocyanines, 2011, 15, 505-516.	0.8	8
83	Complexity in structure-directed prebiotic chemistry. Unexpected compositional richness from competing reactants in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6421-6433.	2.8	8
84	Enumeration of Virtual Libraries of Combinatorial Modular Macrocyclic (Bracelet, Necklace) Architectures and Their Linear Counterparts. Journal of Chemical Information and Modeling, 2013, 53, 2203-2216.	5.4	7
85	Integration of Cyanine, Merocyanine and Styryl Dye Motifs with Synthetic Bacteriochlorins. Photochemistry and Photobiology, 2016, 92, 111-125.	2.5	7
86	The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles. Origins of Life and Evolution of Biospheres, 2017, 47, 93-119.	1.9	7
87	Synthesis and Spectral Properties of meso-Arylbacteriochlorins, Including Insights into Essential Motifs of their Hydrodipyrrin Precursors. Molecules, 2017, 22, 634.	3.8	7
88	Fluorescence Assay for Tolyporphins Amidst Abundant Chlorophyll in Crude Cyanobacterial Extracts. Photochemistry and Photobiology, 2021, , .	2.5	7
89	Electronic Structure and Excited-State Dynamics of Rylene–Tetrapyrrole Panchromatic Absorbers. Journal of Physical Chemistry A, 2021, 125, 7900-7919.	2.5	7
90	Benzo[3.3]benzo[3.3]benzo- and naphtho[3.3]benzo[3.3]naphtho-orthocyclophane bis(alcohol)s. Preparations and structures. Tetrahedron, 1998, 54, 5171-5186.	1.9	6

#	Article	IF	CITATIONS
91	Thieno[3.3]orthocyclophanes: preparations and structures. New Journal of Chemistry, 1999, 23, 675-678.	2.8	6
92	Probing the Rate of Hole Transfer in Oxidized Synthetic Chlorin Dyads via Site-Specific ¹³ C-Labeling. Journal of Organic Chemistry, 2010, 75, 3193-3202.	3.2	6
93	Elaboration of an unexplored substitution site in synthetic bacteriochlorins. Journal of Porphyrins and Phthalocyanines, 2015, 19, 887-902.	0.8	6
94	Bioconjugatable synthetic chlorins rendered water-soluble with three PEC-12 groups <i>via</i> click chemistry. Journal of Porphyrins and Phthalocyanines, 2020, 24, 362-378.	0.8	6
95	Enumeration of Isomers of Substituted Tetrapyrrole Macrocycles: From Classical Problems in Biology to Modern Combinatorial Libraries. Handbook of Porphyrin Science, 2012, , 1-80.	0.8	5
96	Complexity in structure-directed prebiotic chemistry. Effect of a defective competing reactant in tetrapyrrole formation. New Journal of Chemistry, 2015, 39, 8273-8281.	2.8	5
97	Conformational Analysis of Spirocyclopropane- and Spirooxirane-annelated Dibenzobicyclo[4.4.1]undecanes by 1H NMR Spectroscopy and X-Ray Crystallography. Journal of Chemical Research Synopses, 1997, , 48-49.	0.3	4
98	Radiosynthesis of [18F]N-(4-phenylbutyl)-4-(4-fluorobenzoyl)piperidine for studying serotonin 5-HT2a receptors. Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 41, 941-949.	1.0	4
99	Activation Energies for Oxidation of Porphyrin Monolayers Anchored to Au(111). Langmuir, 2010, 26, 15718-15721.	3.5	4
100	NMR spectral properties of 16 synthetic bacteriochlorins with site-specific 13C or 15N substitution. Journal of Porphyrins and Phthalocyanines, 2014, 18, 433-456.	0.8	4
101	Scope and limitations of two model prebiotic routes to tetrapyrrole macrocycles. New Journal of Chemistry, 2016, 40, 7445-7455.	2.8	4
102	Developing a user community in the photosciences: a website for spectral data and PhotochemCAD. , 2019, , .		4
103	Absorption and fluorescence spectra of organic compounds from 40 sources – archives, repositories, databases, and literature search engines. , 2020, , .		4
104	Layered [3.3]Orthocyclophane Tricarbonylchromium Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1999, 625, 1249-1251.	1.2	3
105	Complexity in structure-directed prebiotic chemistry. Reaction bifurcation from a β-diketone in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6434-6440.	2.8	3
106	Synthesis of 8,16-dimethyl- and 8,16-dimethoxy-5,13-di-t-butyl[2.2]metacyclophane-1,2,9,10-tetraone. Tetrahedron Letters, 1999, 40, 4691-4692.	1.4	2
107	Analysis of Wikipedia pageviews to identify popular chemicals. , 2020, , .		2
108	Novel rearrangement of conformationally restrained [3.3]orthocyclophanes. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2101-2108.	0.9	1

#	Article	IF	CITATIONS
109	Red and near-infrared fluorophores inspired by chlorophylls: consideration of practical brightness in multicolor flow cytometry and biomedical sciences. , 2018, , .		1
110	Crystal Structure of 1,9-Dibromo-5-phenyldipyrrin, Tetrapyrrole Synthesis Derivative and Free Base Ligand of BODIPY Building Blocks. X-ray Structure Analysis Online, 2020, 36, 21-22.	0.2	1
111	A Tin-Complexation Strategy for Use with Diverse Acylation Methods in the Preparation of 1,9-Diacyldipyrromethanes ChemInform, 2004, 35, no.	0.0	0