Minghua Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8968343/publications.pdf

Version: 2024-02-01

MINCHUA NIE

#	Article	IF	CITATIONS
1	Effect of colloidal fluorescence properties on the complexation of chloramphenicol and carbamazepine to the natural aquatic colloids. Chemosphere, 2022, 286, 131604.	8.2	10
2	Coupled effects of landscape structures and water chemistry on bacterioplankton communities at multi-spatial scales. Science of the Total Environment, 2022, 811, 151350.	8.0	8
3	Liming and tillering application of manganese alleviates iron manganese plaque reduction and cadmium accumulation in rice (Oryza sativa L.). Journal of Hazardous Materials, 2022, 427, 127897.	12.4	22
4	Remediation of sulfathiazole contaminated soil by peroxymonosulfate: Performance, mechanism and phytotoxicity. Science of the Total Environment, 2022, 830, 154839.	8.0	17
5	Enhancement of peroxymonosulfate activation by sinapic acid accelerating Fe(III)/Fe(II) cycle. Chemical Engineering Journal, 2022, 446, 137177.	12.7	16
6	Hydrogen sulfite promoted the activation of persulfate by μM Fe2+ for bisphenol A degradation. Environmental Science and Pollution Research, 2022, 29, 85185-85201.	5.3	2
7	Bisphenol A adsorption behavior on soil and biochar: impact of dissolved organic matter. Environmental Science and Pollution Research, 2021, 28, 32434-32445.	5.3	11
8	Exploration of the variations and relationships between trace metal enrichment in dust and ecological risks associated with rapid urban expansion. Ecotoxicology and Environmental Safety, 2021, 212, 111944.	6.0	20
9	Effect of Water Chemistry, Land Use Patterns, and Geographic Distances on the Spatial Distribution of Bacterioplankton Communities in an Anthropogenically Disturbed Riverine Ecosystem. Frontiers in Microbiology, 2021, 12, 633993.	3.5	6
10	Spatial and Temporal Distribution of Bacterioplankton Molecular Ecological Networks in the Yuan River under Different Human Activity Intensity. Microorganisms, 2021, 9, 1532.	3.6	7
11	Minute Cu2+ coupling with HCO3â^ for efficient degradation of acetaminophen via H2O2 activation. Ecotoxicology and Environmental Safety, 2021, 221, 112422.	6.0	17
12	The partitioning behavior of PAHs between settled dust and its extracted water phase: Coefficients and effects of the fluorescent organic matter. Ecotoxicology and Environmental Safety, 2021, 223, 112573.	6.0	17
13	Ca(OH) ₂ -mediated activation of peroxymonosulfate for the degradation of bisphenol S. RSC Advances, 2021, 11, 33626-33636.	3.6	20
14	Selective degradation of acetaminophen from hydrolyzed urine by peroxymonosulfate alone: performances and mechanisms. RSC Advances, 2021, 11, 40022-40032.	3.6	2
15	Relationship between the characterization of natural colloids and metal elements in surface waters. Environmental Science and Pollution Research, 2020, 27, 31872-31883.	5.3	18
16	Enhanced removal of organic contaminants in water by the combination of peroxymonosulfate and carbonate. Science of the Total Environment, 2019, 647, 734-743.	8.0	81
17	Simultaneous removal of bisphenol A and phosphate from water by peroxymonosulfate combined with calcium hydroxide. Chemical Engineering Journal, 2019, 369, 35-45.	12.7	85
18	Degradation of chloramphenicol using a combination system of simulated solar light, Fe2+ and persulfate. Chemical Engineering Journal, 2018, 348, 455-463.	12.7	90

Minghua Nie

#	Article	IF	CITATIONS
19	Fluorescence characterization of fractionated dissolved organic matter in the five tributaries of Poyang Lake, China. Science of the Total Environment, 2018, 637-638, 1311-1320.	8.0	38
20	Application of a multi-method approach in characterization of natural aquatic colloids from different sources along Huangpu River in Shanghai, China. Science of the Total Environment, 2016, 554-555, 228-236.	8.0	16
21	Degradation of sunscreen agent p-aminobenzoic acid using a combination system of UV irradiation, persulphate and iron(II). Environmental Science and Pollution Research, 2016, 23, 4561-4568.	5.3	17
22	Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary. Chemosphere, 2015, 127, 109-116.	8.2	100
23	Degradation of chloramphenicol by persulfate activated by Fe 2+ and zerovalent iron. Chemical Engineering Journal, 2015, 279, 507-515.	12.7	186
24	Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters. Journal of Hazardous Materials, 2015, 299, 241-248.	12.4	52
25	Selected emerging organic contaminants in the Yangtze Estuary, China: A comprehensive treatment of their association with aquatic colloids. Journal of Hazardous Materials, 2015, 283, 14-23.	12.4	68
26	Polycyclic aromatic hydrocarbons (PAHs) in Chinese coal: occurrence and sorption mechanism. Environmental Earth Sciences, 2014, 71, 623-630.	2.7	5
27	Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chemical Engineering Journal, 2014, 246, 373-382.	12.7	378
28	Environmental estrogens in a drinking water reservoir area in Shanghai: Occurrence, colloidal contribution and risk assessment. Science of the Total Environment, 2014, 487, 785-791.	8.0	65