Anna Kosogor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/896792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of magnetic, electronic and lattice contributions to low-temperature specific heat: Procedure and its application to metamagnetic alloys. Journal of Magnetism and Magnetic Materials, 2022, 541, 168549.	2.3	1
2	Landau theory of ferroelastic phase transitions: Application to martensitic phase transformations. Low Temperature Physics, 2022, 48, 206-211.	0.6	2
3	Inverse magnetocaloric effect in the solids undergoing ferromagnetic – antiferromagnetic phase transition: Landau theory applied to Fe-Rh alloys. Journal of Magnetism and Magnetic Materials, 2021, 517, 167269.	2.3	5
4	Theory of giant magnetocaloric effect in the shape memory alloy undergoing magnetostuctural phase transition. Low Temperature Physics, 2020, 46, 764-767.	0.6	1
5	Influence of incorporated nanoparticles on superelastic behavior of shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 776, 139025.	5.6	2
6	Magnetocaloric Effect in Metamagnetic Shape Memory Alloy. Journal of Nano- and Electronic Physics, 2020, 12, 01018-1-01018-4.	0.5	0
7	Magnetocaloric Effect Caused by Paramagnetic Austenite–Ferromagnetic Martensite Phase Transformation. Metals, 2019, 9, 11.	2.3	9
8	Internal pressure as a key thermodynamic factor to obtain high-temperature superelasticity of shape memory alloys. Materials Letters, 2018, 210, 252-254.	2.6	10
9	Influence of Ferroelastic Phase Transitions on the Spatial Distribution of Point Defects in Real Solids. Journal of Nano- and Electronic Physics, 2018, 10, 03031-1-03031-5.	0.5	0
10	Magnetic and nonmagnetic contributions to the heat capacity of metamagnetic shape memory alloy. Journal of Applied Physics, 2017, 121, .	2.5	17
11	Entropy Change Caused by Martensitic Transformations of Ferromagnetic Shape Memory Alloys. Metals, 2017, 7, 509.	2.3	1
12	Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior. Journal of Applied Physics, 2016, 119, .	2.5	24
13	Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field. Journal Physics D: Applied Physics, 2016, 49, 355005.	2.8	1
14	Damping Properties of Magnetically Ordered Shape Memory Alloys. Materials Science Forum, 2016, 845, 77-82.	0.3	0
15	Narrowing of hysteresis of cubic-tetragonal martensitic transformation by weak axial stressing of ferromagnetic shape memory alloy. Journal of Applied Physics, 2016, 119, 224903.	2.5	5
16	Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys. Journal of Applied Physics, 2015, 118, .	2.5	6
17	Martensitic transformation in shape memory crystal with defects: Monte Carlo simulations and Landau theory. Physica Status Solidi (B): Basic Research, 2015, 252, 2309-2316.	1.5	2
18	Influence of different mechanisms of martensite aging on the features of martensitic transformations. Physica Status Solidi (B): Basic Research, 2015, 252, 2758-2761	1.5	0

Anna Kosogor

#	Article	IF	CITATIONS
19	Influence of aging and thermomechanical cycling on the magnetostriction and magnetic shape memory effect in martensitic alloy. Journal Physics D: Applied Physics, 2015, 48, 395002.	2.8	3
20	Landau theory for the phase transitions of interstitial hydrogen in strained vanadium. Physical Review B, 2014, 89, .	3.2	2
21	Hysteretic and anhysteretic tensile stress–strain behavior of Ni–Fe(Co)–Ga single crystal: Experiment and theory. Acta Materialia, 2014, 66, 79-85.	7.9	36
22	Modelling of hysteresis loops taken during the stress- and temperature-induced martensitic transformations. Phase Transitions, 2013, 86, 796-810.	1.3	8
23	Impact of the volume change on the ageing effects in Cu–Al–Ni martensite: experiment and theory. Journal of Physics Condensed Matter, 2013, 25, 335402.	1.8	5
24	Transformation Volume Effects on Shape Memory Alloys. Metals, 2013, 3, 237-282.	2.3	33
25	Destabilization of Ni–Mn–Ga martensite: Experiment and theory. Acta Materialia, 2012, 60, 1587-1593.	7.9	29
26	Stabilizing internal stress as the thermodynamic factor of martensite aging effects. Acta Materialia, 2011, 59, 3593-3601.	7.9	18
27	The Symmetry-Conforming Theory of Martensite Aging. Materials Science Forum, 2009, 635, 13-19.	0.3	15