
Gyorgy Petrovics

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8967823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance of African-ancestry-specific polygenic hazard score varies according to local ancestry in 8q24. Prostate Cancer and Prostatic Diseases, 2022, 25, 229-237.	2.0	9
2	A Rare Germline HOXB13 Variant Contributes to Risk of Prostate Cancer in Men of African Ancestry. European Urology, 2022, 81, 458-462.	0.9	22
3	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	2.0	14
4	Focal p53 protein expression and lymphovascular invasion in primary prostate tumors predict metastatic progression. Scientific Reports, 2022, 12, 5404.	1.6	10
5	Germline mutation landscape of DNA damage repair genes in African Americans with prostate cancer highlights potentially targetable RAD genes. Nature Communications, 2022, 13, 1361.	5.8	8
6	Abstract 1961: Discovery and validation of prostate cancer biomarkers of biochemical recurrence in low-risk prostate cancer patients. Cancer Research, 2022, 82, 1961-1961.	0.4	0
7	Abstract 2220: Immunohistochemical detection of prostate cancer heterogeneity by using ETS and PTEN monoclonal antibodies. Cancer Research, 2022, 82, 2220-2220.	0.4	0
8	Africanâ€specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer. International Journal of Cancer, 2021, 148, 99-105.	2.3	24
9	Prognostic features of Annexin A2 expression in prostate cancer. Pathology, 2021, 53, 205-213.	0.3	15
10	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
11	Abstract 2074: Germline mutation landscape of all DNA repair genes in African American prostate cancer patients. , 2021, , .		0
12	Proteomic Tissue-Based Classifier for Early Prediction of Prostate Cancer Progression. Cancers, 2020, 12, 1268.	1.7	8
13	A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry. European Urology, 2020, 78, 316-320.	0.9	32
14	Association of germline genetic variants with <i>TMPRSS2-ERG</i> fusion status in prostate cancer. Oncotarget, 2020, 11, 1321-1333.	0.8	10
15	A Rich Array of Prostate Cancer Molecular Biomarkers: Opportunities and Challenges. International Journal of Molecular Sciences, 2019, 20, 1813.	1.8	96
16	Analysis of PMEPA1 Isoforms (a and b) as Selective Inhibitors of Androgen and TGF-Î ² Signaling Reveals Distinct Biological and Prognostic Features in Prostate Cancer. Cancers, 2019, 11, 1995.	1.7	11
17	Increased frequency of germline BRCA2 mutations associates with prostate cancer metastasis in a racially diverse patient population. Prostate Cancer and Prostatic Diseases, 2019, 22, 406-410.	2.0	45
18	Molecular profiling of radical prostatectomy tissue from patients with no sign of progression identifies <i>ERG</i> as the strongest independent predictor of recurrence. Oncotarget, 2019, 10, 6466-6483.	0.8	10

#	Article	IF	CITATIONS
19	Identification of a Small Molecule That Selectively Inhibits ERG-Positive Cancer Cell Growth. Cancer Research, 2018, 78, 3659-3671.	0.4	44
20	Predicting Prostate Cancer Progression as a Function of ETS-related Gene Status, Race, and Obesity in a Longitudinal Patient Cohort. European Urology Focus, 2018, 4, 818-824.	1.6	16
21	Re: Association Between Combined TMPRSS2:ERG and PCA3 RNA Urinary Testing and Detection of Aggressive Prostate Cancer. European Urology, 2018, 73, 301-302.	0.9	2
22	Prostate Cancer Genomics: Recent Advances and the Prevailing Underrepresentation from Racial and Ethnic Minorities. International Journal of Molecular Sciences, 2018, 19, 1255.	1.8	50
23	Synergistic Activity with NOTCH Inhibition and Androgen Ablation in ERG-Positive Prostate Cancer Cells. Molecular Cancer Research, 2017, 15, 1308-1317.	1.5	31
24	ETS Related Gene mediated Androgen Receptor Aggregation and Endoplasmic Reticulum Stress in Prostate Cancer Development. Scientific Reports, 2017, 7, 1109.	1.6	17
25	Two Novel Susceptibility Loci for Prostate Cancer in Men of African Ancestry. Journal of the National Cancer Institute, 2017, 109, .	3.0	57
26	Autoantibodies against oncogenic ERG protein in prostate cancer: potential use in diagnosis and prognosis in a panel with C-MYC, AMACR and HERV-K Gag. Genes and Cancer, 2017, 7, 394-413.	0.6	14
27	Activation of endogenous TRPV1 fails to induce overstimulation-based cytotoxicity in breast and prostate cancer cells but not in pain-sensing neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2054-2064.	1.9	39
28	Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1. Oncotarget, 2016, 7, 22791-22806.	0.8	19
29	Prostate cancer marker panel with single cell sensitivity in urine. Prostate, 2015, 75, 969-975.	1.2	26
30	A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine, 2015, 2, 1957-1964.	2.7	61
31	ERG Oncoprotein Inhibits ANXA2 Expression and Function in Prostate Cancer. Molecular Cancer Research, 2015, 13, 368-379.	1.5	12
32	Analytical platform evaluation for quantification of ERG in prostate cancer using protein and mRNA detection methods. Journal of Translational Medicine, 2015, 13, 54.	1.8	23
33	Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN. Oncotarget, 2015, 6, 15137-15149.	0.8	29
34	Methylation of the <i>PMEPA1</i> gene, a negative regulator of the androgen receptor in prostate cancer. Epigenetics, 2014, 9, 918-927.	1.3	25
35	A long noncoding RNA connects c-Myc to tumor metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18697-18702.	3.3	258
36	Long noncoding RNA-mediated activation of androgen receptor in prostate cancer. Asian Journal of Andrology, 2014, 16, 418.	0.8	1

#	Article	IF	CITATIONS
37	Evaluation of ERG responsive proteome in prostate cancer. Prostate, 2014, 74, 70-89.	1.2	21
38	Predominance of ERC-negative high-grade prostate cancers in African American men. Molecular and Clinical Oncology, 2014, 2, 982-986.	0.4	24
39	Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer. BMC Cancer, 2014, 14, 16.	1.1	25
40	Functional antagonism of TMPRSS2-ERG splice variants in prostate cancer. Genes and Cancer, 2014, 5, 273-284.	0.6	8
41	Genetic and Molecular Differences in Prostate Carcinogenesis between African American and Caucasian American Men. International Journal of Molecular Sciences, 2013, 14, 15510-15531.	1.8	70
42	<i>TMPRSS2-ERG</i> Status Is Not Prognostic Following Prostate Cancer Radiotherapy: Implications for Fusion Status and DSB Repair. Clinical Cancer Research, 2013, 19, 5202-5209.	3.2	39
43	Low Frequency of the ERG Oncogene Alterations in Prostate Cancer Patients from India. Journal of Cancer, 2013, 4, 468-472.	1.2	15
44	Differences in Frequency of ERG Oncoprotein Expression Between Index Tumors of Caucasian and African American Patients With Prostate Cancer. Urology, 2012, 80, 749-753.	0.5	73
45	TMPRSS2- Driven ERG Expression In Vivo Increases Self-Renewal and Maintains Expression in a Castration Resistant Subpopulation. PLoS ONE, 2012, 7, e41668.	1.1	48
46	ERGoncogene modulates prostaglandin signaling in prostate cancer cells. Cancer Biology and Therapy, 2011, 11, 410-417.	1.5	30
47	Oncogenic activation of <i>ERG:</i> A predominant mechanism in prostate cancer. Journal of Carcinogenesis, 2011, 10, 37.	2.5	51
48	Highlights from the prostate cancer genome report. Asian Journal of Andrology, 2011, 13, 659-660.	0.8	0
49	Prostate Cancer Risk Allele Specific for African Descent Associates with Pathologic Stage at Prostatectomy. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1-8.	1.1	38
50	Evaluation of the <i>ETS</i> -Related Gene mRNA in Urine for the Detection of Prostate Cancer. Clinical Cancer Research, 2010, 16, 1572-1576.	3.2	58
51	Osteoblast-specific Factor 2 Expression in Prostate Cancer-associated Stroma: Identification Through Microarray Technology. Urology, 2010, 75, 768-772.	0.5	4
52	ERG Expression Levels in Prostate Tumors Reflect Functional Status of the Androgen Receptor (AR) as a Consequence of Fusion of ERG with AR Regulated Gene Promoters. The Open Cancer Journal, 2010, 3, 101-108.	0.2	10
53	Evaluation of the 8q24 Prostate Cancer Risk Locus and <i>MYC</i> Expression. Cancer Research, 2009, 69, 5568-5574.	0.4	110
54	The center for prostate disease research (CPDR): A multidisciplinary approach to translational research. Urologic Oncology: Seminars and Original Investigations, 2009, 27, 562-569.	0.8	27

#	Article	IF	CITATIONS
55	Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-κB. Journal of Neurochemistry, 2008, 79, 35-44.	2.1	91
56	Mapping of TMPRSS2–ERG fusions in the context of multi-focal prostate cancer. Modern Pathology, 2008, 21, 67-75.	2.9	123
57	<i>PCA3</i> Score Before Radical Prostatectomy Predicts Extracapsular Extension and Tumor Volume. Journal of Urology, 2008, 180, 1975-1979.	0.2	160
58	Higher Expression of the Androgen-Regulated Gene <i>PSA/HK3</i> mRNA in Prostate Cancer Tissues Predicts Biochemical Recurrence-Free Survival. Clinical Cancer Research, 2008, 14, 758-763.	3.2	21
59	Delineation of <i>TMPRSS2-ERG</i> Splice Variants in Prostate Cancer. Clinical Cancer Research, 2008, 14, 4719-4725.	3.2	90
60	Silencing of lactotransferrin expression by methylation in prostate cancer progression. Cancer Biology and Therapy, 2007, 6, 1088-1095.	1.5	50
61	Higher Tumor to Benign Ratio of the Androgen Receptor mRNA Expression Associates with Prostate Cancer Progression after Radical Prostatectomy. Urology, 2007, 70, 1225-1229.	0.5	32
62	Regulation of Apoptosis by a Prostate-Specific and Prostate Cancer-Associated Noncoding Gene, PCGEM1. DNA and Cell Biology, 2006, 25, 135-141.	0.9	204
63	Preferential radiation sensitization of prostate cancer in nude mice by nutraceutical antioxidant Î ³ -tocotrienol. Life Sciences, 2006, 78, 2099-2104.	2.0	49
64	Characterization of Frequently Deleted 6q Locus in Prostate Cancer. DNA and Cell Biology, 2006, 25, 597-607.	0.9	11
65	Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene, 2005, 24, 3847-3852.	2.6	326
66	Androgen Receptor Binding Sites Identified by a GREF_GATA Model. Journal of Molecular Biology, 2005, 353, 763-771.	2.0	52
67	Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene, 2004, 23, 605-611.	2.6	247
68	All amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell and Tissue Research, 2004, 315, 181-186.	1.5	25
69	The synergistic activation of Raf-1 kinase by phorbol myristate acetate and hydrogen peroxide in NIH3T3 cells. Biochemical and Biophysical Research Communications, 2003, 311, 1026-1033.	1.0	8
70	PMEPA1, an androgen-regulated NEDD4-binding protein, exhibits cell growth inhibitory function and decreased expression during prostate cancer progression. Cancer Research, 2003, 63, 4299-304.	0.4	94
71	Protein Kinase Cϵ Mediates PMA-Induced Growth Inhibition of Low Population Density NIH 3T3 Fibroblasts. Archives of Biochemistry and Biophysics, 2002, 397, 217-223.	1.4	5
72	Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene, 2002, 21, 8749-8758.	2.6	128

#	Article	IF	CITATIONS
73	A human novel gene DERPC on 16q22.1 inhibits prostate tumor cell growth and its expression is decreased in prostate and renal tumors. Molecular Medicine, 2002, 8, 655-63.	1.9	10
74	Up-regulation of the Pit-2 Phosphate Transporter/Retrovirus Receptor by Protein Kinase C ε. Journal of Biological Chemistry, 1999, 274, 7067-7071.	1.6	22
75	Overexpression of Protein Kinase C-ε and Its Regulatory Domains in Fibroblasts Inhibits Phorbol Ester-Induced Phospholipase D Activity. Archives of Biochemistry and Biophysics, 1999, 363, 121-128.	1.4	14
76	Cloning of a WD-repeat-containing gene from alfalfa (Medicago sativa): a role in hormone-mediated cell division?. Plant Molecular Biology, 1997, 34, 771-780.	2.0	41
77	Influence of Various Domains of Protein Kinase C Ϊμ on Its PMA-Induced Translocation from the Golgi to the Plasma Membrane. Biochemical and Biophysical Research Communications, 1996, 223, 98-103.	1.0	15
78	Protein Kinase C â^Š Subcellular Localization Domains and Proteolytic Degradation Sites. Journal of Biological Chemistry, 1995, 270, 19651-19658.	1.6	68
79	The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Molecular Microbiology, 1993, 8, 1083-1094.	1.2	76
80	Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for d-glucosamine synthetase. Molecular Genetics and Genomics, 1991, 228, 113-124.	2.4	108