Jay L Koyner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/896708/publications.pdf

Version: 2024-02-01

120 papers 11,651 citations

45 h-index 28297 105 g-index

144 all docs

144 docs citations

144 times ranked 11146 citing authors

#	Article	IF	CITATIONS
1	Extracorporeal Blood Purification Is Appropriate in Critically Ill Patients with COVID-19 and Multiorgan Failure: COMMENTARY. Kidney360, 2022, 3, 423-425.	2.1	1
2	Artificial Intelligence for AKI!Now: Let's Not Await Plato's Utopian Republic. Kidney360, 2022, 3, 376-381.	2.1	11
3	Performance of a Standardized Clinical Assay for Urinary C–C Motif Chemokine Ligand 14 (CCL14) for Persistent Severe Acute Kidney Injury. Kidney360, 2022, 3, 1158-1168.	2.1	13
4	Management of Respiratory Failure. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 572-580.	4.5	2
5	Early versus delayed initiation of renal replacement therapy in cardiac-surgery associated acute kidney injury: an economic perspective. Journal of Critical Care, 2022, 69, 153977.	2.2	4
6	Characterising acute kidney injury: The complementary roles of biomarkers of renal stress and renal function. Journal of Critical Care, 2022, 71, 154066.	2.2	5
7	Optimizing the Design and Analysis of Future AKI Trials. Journal of the American Society of Nephrology: JASN, 2022, 33, 1459-1470.	6.1	17
8	Results from the TRIBE-AKI Study found associations between post-operative blood biomarkers and risk of chronic kidney disease after cardiac surgery. Kidney International, 2021, 99, 716-724.	5.2	35
9	Artificial Intelligence in Acute Kidney Injury: From Static to Dynamic Models. Advances in Chronic Kidney Disease, 2021, 28, 74-82.	1.4	10
10	Severe Acute Respiratory Syndrome–Associated Coronavirus 2 Infection and Organ Dysfunction in the ICU: Opportunities for Translational Research. , 2021, 3, e0374.		20
11	Variation in Best Practice Measures in Patients With Severe Hospital-Acquired Acute Kidney Injury: A Multicenter Study. American Journal of Kidney Diseases, 2021, 77, 547-549.	1.9	19
12	Postoperative acute kidney injury in adult non-cardiac surgery: joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative. Nature Reviews Nephrology, 2021, 17, 605-618.	9.6	94
13	Urinary EGF and MCP-1 and risk of CKD after cardiac surgery. JCI Insight, 2021, 6, .	5.0	16
14	Renal Considerations in COVID-19: Biology, Pathology, and Pathophysiology. ASAIO Journal, 2021, 67, 1087-1096.	1.6	5
15	Pathophysiology of COVID-19-associated acute kidney injury. Nature Reviews Nephrology, 2021, 17, 751-764.	9.6	280
16	Performance of crisis standards of care guidelines in a cohort of critically ill COVID-19 patients in the United States. Cell Reports Medicine, 2021, 2, 100376.	6.5	8
17	Identification of Distinct Clinical Subphenotypes in Critically III Patients With COVID-19. Chest, 2021, 160, 929-943.	0.8	31
18	Sepsis and Kidney Injury. Contributions To Nephrology, 2021, 199, 56-70.	1.1	8

#	Article	IF	Citations
19	Novel Use of Premixed Dialysate Bags during Water Supply Interruption in Acute Hospital Setting. Kidney360, 2021, 2, 339-343.	2.1	2
20	CSA-AKI: Incidence, Epidemiology, Clinical Outcomes, and Economic Impact. Journal of Clinical Medicine, 2021, 10, 5746.	2.4	18
21	The impact of biomarkers of acute kidney injury on individual patient care. Nephrology Dialysis Transplantation, 2020, 35, 1295-1305.	0.7	27
22	Association of plasma-soluble ST2 and galectin-3 with cardiovascular events and mortality following cardiac surgery. American Heart Journal, 2020, 220, 253-263.	2.7	10
23	Quality of Care for Acute Kidney Disease: Current Knowledge Gaps and Future Directions. Kidney International Reports, 2020, 5, 1634-1642.	0.8	19
24	Not All Sepsis-Associated Acute Kidney Injury Is the Same. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1543-1545.	4.5	1
25	COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nature Reviews Nephrology, 2020, 16, 747-764.	9.6	466
26	Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Internal Medicine, 2020, 180, 1436.	5.1	711
27	Internal and External Validation of a Machine Learning Risk Score for Acute Kidney Injury. JAMA Network Open, 2020, 3, e2012892.	5.9	69
28	Outcomes of critically ill solid organ transplant patients with COVID-19 in the United States. American Journal of Transplantation, 2020, 20, 3061-3071.	4.7	89
29	Case-based discussions in onco-nephrology. Journal of Onco-Nephrology, 2020, 4, 135-144.	0.6	1
30	Subclinical Acute Kidney Injury Is Acute Kidney Injury and Should Not Be Ignored. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 786-787.	5.6	10
31	Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Medicine, 2020, 46, 943-953.	8.2	120
32	Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney International, 2020, 98, 294-309.	5.2	254
33	Fluid Overload and Mortality in Patients with Severe Acute Kidney Injury and Extracorporeal Membrane Oxygenation. Kidney360, 2020, 1, 232-240.	2.1	3
34	Individualized acute kidney injury after care. Current Opinion in Critical Care, 2020, 26, 581-589.	3.2	5
35	Kidney injury is not prevented by hydration alone. European Heart Journal, 2019, 40, 3179-3181.	2.2	2
36	Serial Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor-Binding Protein 7 and the Prognosis for Acute Kidney Injury over the Course of Critical Illness. CardioRenal Medicine, 2019, 9, 358-369.	1.9	12

#	Article	IF	CITATIONS
37	Association of T Cell–Derived Inflammatory Cytokines With Acute Kidney Injury andÂMortality After Cardiac Surgery. Kidney International Reports, 2019, 4, 1689-1697.	0.8	22
38	Patient-provider communications about pharmacogenomic results increase patient recall of medication changes. Pharmacogenomics Journal, 2019, 19, 528-537.	2.0	12
39	Clinical use of [TIMP-2]•[IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Critical Care, 2019, 23, 225.	5.8	46
40	Quality Improvement Goals for Acute Kidney Injury. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 941-953.	4.5	152
41	The Association of Angiogenesis Markers With Acute Kidney Injury and Mortality After Cardiac Surgery. American Journal of Kidney Diseases, 2019, 74, 36-46.	1.9	38
42	Use of Cell Cycle Arrest Biomarkers in Conjunction With Classical Markers of Acute Kidney Injury. Critical Care Medicine, 2019, 47, e820-e826.	0.9	46
43	Sepsis associated acute kidney injury. BMJ: British Medical Journal, 2019, 364, k4891.	2.3	380
44	Predicting Acute Renal Injury in Cancer Patients Receiving Cisplatin Using Urinary Neutrophil Gelatinaseâ€Associated Lipocalin and Cystatin C. Clinical and Translational Science, 2018, 11, 420-427.	3.1	8
45	The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model*. Critical Care Medicine, 2018, 46, 1070-1077.	0.9	214
46	Drug management in acute kidney disease – Report of the Acute Disease Quality Initiative XVI meeting. British Journal of Clinical Pharmacology, 2018, 84, 396-403.	2.4	42
47	The prognostic value of the furosemide stress test in predicting delayed graft function following deceased donor kidney transplantation. Biomarkers, 2018, 23, 61-69.	1.9	27
48	Diagnostic Approach: Differential Diagnosis, Physical Exam, Lab Tests, Imaging, and Novel Biomarkers., 2018,, 23-42.		0
49	Update on Perioperative Acute Kidney Injury. Anesthesia and Analgesia, 2018, 127, 1236-1245.	2.2	97
50	Cytokine Clearances in Critically III Patients on Continuous Renal Replacement Therapy. Blood Purification, 2018, 46, 315-322.	1.8	12
51	Cardiac and Vascular Surgery–Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. Journal of the American Heart Association, 2018, 7, .	3.7	182
52	Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nature Reviews Nephrology, 2017, 13, 241-257.	9.6	946
53	Have biomarkers failed in acute kidney injury? No. Intensive Care Medicine, 2017, 43, 887-889.	8.2	6
54	Use of stress tests in evaluating kidney disease. Current Opinion in Nephrology and Hypertension, 2017, 26, 31-35.	2.0	11

#	Article	IF	CITATIONS
55	Optimal Role of the Nephrologist in the Intensive Care Unit. Blood Purification, 2017, 43, 68-77.	1.8	31
56	Interleukin-8 and Tumor Necrosis Factor Predict Acute Kidney Injury After Pediatric Cardiac Surgery. Annals of Thoracic Surgery, 2017, 104, 2072-2079.	1.3	49
57	Biomarkers in acute kidney injury: that's all the story?. Intensive Care Medicine, 2017, 43, 1931-1932.	8.2	O
58	Reconfiguring Health Care Delivery to Improve AKI Outcomes. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1203-1205.	4.5	2
59	Relationship of Kidney Injury Biomarkers with Long-Term Cardiovascular Outcomes after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2017, 28, 3699-3707.	6.1	59
60	Proenkephalin (PENK) as a Novel Biomarker for Kidney Function. journal of applied laboratory medicine, The, 2017, 2, 400-412.	1.3	27
61	Urinalysis findings and urinary kidney injury biomarker concentrations. BMC Nephrology, 2017, 18, 218.	1.8	17
62	First Post-Operative Urinary Kidney Injury Biomarkers and Association with the Duration of AKI in the TRIBE-AKI Cohort. PLoS ONE, 2016, 11, e0161098.	2.5	42
63	Risk Stratification for Acute Kidney Injury: Are Biomarkers Enough?. Advances in Chronic Kidney Disease, 2016, 23, 167-178.	1.4	28
64	Development of a Multicenter Ward–Based AKI Prediction Model. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1935-1943.	4.5	88
65	Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury. Nephrology Dialysis Transplantation, 2016, 31, 1633-1640.	0.7	35
66	Association of Peak Changes in Plasma Cystatin C and Creatinine With Death After Cardiac Operations. Annals of Thoracic Surgery, 2016, 101, 1395-1401.	1.3	4
67	Clinical Use of the Urine Biomarker [TIMP-2]Â× [IGFBP7] forÂAcute Kidney Injury Risk Assessment. American Journal of Kidney Diseases, 2016, 68, 19-28.	1.9	172
68	Association of Perioperative Plasma Neutrophil Gelatinase-Associated Lipocalin Levels with 3-Year Mortality after Cardiac Surgery: A Prospective Observational Cohort Study. PLoS ONE, 2015, 10, e0129619.	2.5	17
69	Furosemide Stress Test and Biomarkers for the Prediction of AKI Severity. Journal of the American Society of Nephrology: JASN, 2015, 26, 2023-2031.	6.1	205
70	Promoting Kidney Function Recovery in Patients with AKI Requiring RRT. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1859-1867.	4.5	98
71	The Golden Hours of AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1311-1313.	4.5	2
72	Biomarkers in Acute Kidney Injury. Critical Care Clinics, 2015, 31, 633-648.	2.6	30

#	Article	IF	CITATIONS
73	Entanglement of Sepsis, Chronic Kidney Disease, and Other Comorbidities in Patients Who Develop Acute Kidney Injury. Seminars in Nephrology, 2015, 35, 23-37.	1.6	13
74	Tissue Inhibitor Metalloproteinase-2 (TIMP-2)â‹IGF-Binding Protein-7 (IGFBP7) Levels Are Associated with Adverse Long-Term Outcomes in Patients with AKI. Journal of the American Society of Nephrology: JASN, 2015, 26, 1747-1754.	6.1	196
75	Urine Biomarkers and Perioperative Acute Kidney Injury: TheÂlmpact of Preoperative Estimated GFR. American Journal of Kidney Diseases, 2015, 66, 1006-1014.	1.9	16
76	Outpatient Dialysis for Patients with AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1868-1874.	4.5	24
77	Nephrohepatology: Managing the Nexus of Liver and Kidney Interactions. Advances in Chronic Kidney Disease, 2015, 22, 335-336.	1.4	1
78	Acute Kidney Injury: A Modifiable Risk Factor for Cardiovascular Morbidity and Mortality. American Journal of Nephrology, 2015, 42, 282-284.	3.1	1
79	Preparing for Renal Replacement Therapy in Patients with the Ebola Virus Disease. Blood Purification, 2014, 38, 276-285.	1.8	9
80	Acute Kidney Injury and Mortality following Ventricular Assist Device Implantation. American Journal of Nephrology, 2014, 39, 195-203.	3.1	22
81	Urinary Biomarkers of AKI and Mortality 3 Years after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2014, 25, 1063-1071.	6.1	144
82	Biomarkers for Acute Kidney Injury: Where Are We Today? Where Should We Go?. Clinical Chemistry, 2014, 60, 294-300.	3.2	21
83	Blood transfusions are associated with urinary biomarkers of kidney injury in cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 726-732.	0.8	61
84	The Daily Burden of Acute Kidney Injury: A Survey of US Nephrologists on World Kidney Day. American Journal of Kidney Diseases, 2014, 64, 394-401.	1.9	56
85	Association Between Preoperative Statin Use andÂAcute Kidney Injury Biomarkers in Cardiac Surgical Procedures. Annals of Thoracic Surgery, 2014, 97, 2081-2087.	1.3	41
86	Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 932-939.	5.6	402
87	Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Critical Care, 2013, 17, R25.	5.8	969
88	Chemical Analog-to-Digital Signal Conversion Based on Robust Threshold Chemistry and Its Evaluation in the Context of Microfluidics-Based Quantitative Assays. Journal of the American Chemical Society, 2013, 135, 14775-14783.	13.7	20
89	Clinical Utility of Biomarkers of AKI in Cardiac Surgery and Critical Illness. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1034-1042.	4.5	90
90	Urinary Cystatin C and Acute Kidney Injury After Cardiac Surgery. American Journal of Kidney Diseases, 2013, 61, 730-738.	1.9	45

#	Article	IF	Citations
91	Differential Diagnosis of AKI in Clinical Practice by Functional and Damage Biomarkers: Workgroup Statements from the Tenth Acute Dialysis Quality Initiative Consensus Conference. Contributions To Nephrology, 2013, 182, 30-44.	1.1	110
92	Human miRNome Profiling Identifies MicroRNAs Differentially Present in the Urine after Kidney Injury. Clinical Chemistry, 2013, 59, 1742-1752.	3.2	107
93	Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury. Critical Care, 2013, 17, R207.	5.8	265
94	Preoperative angiotensin-converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery. Nephrology Dialysis Transplantation, 2013, 28, 2787-2799.	0.7	93
95	Performance of Kidney Injury Molecule-1 and Liver Fatty Acid-Binding Protein and Combined Biomarkers of AKI after Cardiac Surgery. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1079-1088.	4.5	194
96	Compliance with Antibiotic Dosing Guidelines in Critically Ill Patients Receiving Renal Replacement Therapy. Journal of Pharmacy Technology, 2013, 29, 161-169.	1.0	1
97	Association of Postoperative Proteinuria with AKI after Cardiac Surgery among Patients at High Risk. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1749-1760.	4.5	41
98	Preoperative Serum Brain Natriuretic Peptide and Risk of Acute Kidney Injury After Cardiac Surgery. Circulation, 2012, 125, 1347-1355.	1.6	81
99	Autologous Creatinine Clearance in a Case of Necrotizing Fasciitis and Anuria. American Journal of Nephrology, 2012, 35, 225-229.	3.1	1
100	Serum Cystatin C– Versus Creatinine-Based Definitions of Acute Kidney Injury Following Cardiac Surgery: A Prospective Cohort Study. American Journal of Kidney Diseases, 2012, 60, 922-929.	1.9	91
101	Biomarkers Predict Progression of Acute Kidney Injury after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2012, 23, 905-914.	6.1	244
102	Assessment and Diagnosis of Renal Dysfunction in the ICU. Chest, 2012, 141, 1584-1594.	0.8	26
103	Presurgical Serum Cystatin C and Risk of Acute Kidney Injury After Cardiac Surgery. American Journal of Kidney Diseases, 2011, 58, 366-373.	1.9	75
104	The Outcome of Neutrophil Gelatinase-Associated Lipocalin-Positive Subclinical Acute Kidney Injury. Journal of the American College of Cardiology, 2011, 57, 1752-1761.	2.8	597
105	Urine Cystatin C as a Biomarker of Proximal Tubular Function Immediately after Kidney Transplantation. American Journal of Nephrology, 2011, 33, 407-413.	3.1	36
106	Postoperative Biomarkers Predict Acute Kidney Injury and Poor Outcomes after Adult Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2011, 22, 1748-1757.	6.1	575
107	Postoperative Biomarkers Predict Acute Kidney Injury and Poor Outcomes after Pediatric Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2011, 22, 1737-1747.	6.1	327
108	Urinary glutathione S-transferases in the pathogenesis and diagnostic evaluation of acute kidney injury following cardiac surgery: a critical review. Current Opinion in Critical Care, 2010, 16, 550-555.	3.2	26

#	Article	IF	CITATIONS
109	The Effects of Heart Failure on Renal Function. Cardiology Clinics, 2010, 28, 453-465.	2.2	26
110	Mechanical Ventilation and the Kidney. Blood Purification, 2010, 29, 52-68.	1.8	98
111	Urinary Biomarkers in the Clinical Prognosis and Early Detection of Acute Kidney Injury. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 2154-2165.	4.5	296
112	Effect of blood pressure lowering on markers of kidney disease progression. Current Hypertension Reports, 2009, 11, 368-374.	3.5	4
113	Antioxidants. Nephron Experimental Nephrology, 2008, 109, e109-e117.	2.2	86
114	Mechanical Ventilation and Lung–Kidney Interactions. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 562-570.	4.5	66
115	Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney International, 2008, 74, 1059-1069.	5.2	320
116	Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behavior Genetics, 2001, 31, 79-91.	2.1	93
117	Effect of genetic cross on the detection of quantitative trait loci and a novel approach to mapping QTLs. Pharmacology Biochemistry and Behavior, 2000, 67, 767-772.	2.9	33
118	Identification and time dependence of quantitative trait loci for basal locomotor activity in the BXD recombinant inbred series and a B6D2 F2 intercross. Behavior Genetics, 2000, 30, 159-170.	2.1	42
119	Urine sediment exam provides more diagnostic information in AKI than novel urinary biomarkers: CON. Kidney360, 0, , 10.34067/KID.0004582021.	2.1	0
120	Acute Tubular Necrosis. , 0, , 97-109.		0