Peng Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/8966848/peng-chen-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

84 163 250 27,940 h-index g-index citations papers 261 31,456 10.3 7.41 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
250	Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. <i>Small</i> , 2015 , 11, 1620-36	11	1415
249	Biological and chemical sensors based on graphene materials. <i>Chemical Society Reviews</i> , 2012 , 41, 2283	-3587 5	1384
248	3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. <i>ACS Nano</i> , 2012 , 6, 3206-13	16.7	1371
247	Heteroatom-doped graphene materials: syntheses, properties and applications. <i>Chemical Society Reviews</i> , 2014 , 43, 7067-98	58.5	1258
246	In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10842-10846	3.8	650
245	Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. <i>ACS Nano</i> , 2010 , 4, 3201-8	16.7	529
244	Doping single-layer graphene with aromatic molecules. <i>Small</i> , 2009 , 5, 1422-6	11	499
243	Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. <i>ACS Nano</i> , 2012 , 6, 2394-400	16.7	469
242	Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. <i>Advanced Materials</i> , 2010 , 22, 1649-53	24	450
241	Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. <i>Chemical Communications</i> , 2012 , 48, 1066	50 ⁵ 2 ⁸	436
240	One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties. <i>Chemistry of Materials</i> , 2009 , 21, 2868-2874	9.6	406
239	Solution-processable 2D semiconductors for high-performance large-area electronics. <i>Nature</i> , 2018 , 562, 254-258	50.4	404
238	Revealing the tunable photoluminescence properties of graphene quantum dots. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6954-6960	7.1	398
237	Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe3+ Sensing. <i>Advanced Functional Materials</i> , 2014 , 24, 3021-3026	15.6	377
236	Nanoelectronic biosensors based on CVD grown graphene. <i>Nanoscale</i> , 2010 , 2, 1485-8	7.7	354
235	Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. <i>Nano Letters</i> , 2004 , 4, 1333-1337	11.5	352
234	Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. <i>Advanced Materials</i> , 2019 , 31, e1808283	24	343

233	Surface Modified TiC MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 40077-40086	9.5	329
232	Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. <i>Chemical Society Reviews</i> , 2016 , 45, 2239-62	58.5	311
231	Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4651-6	16.4	310
230	PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES. <i>Nano Letters</i> , 2004 , 4, 2293-2298	11.5	300
229	Graphene-based biosensors for detection of bacteria and their metabolic activities. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12358		294
228	Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano, 2011, 5, 5038-44	16.7	284
227	Strategies for enhancing the sensitivity of plasmonic nanosensors. <i>Nano Today</i> , 2015 , 10, 213-239	17.9	283
226	Interfacing live cells with nanocarbon substrates. <i>Langmuir</i> , 2010 , 26, 2244-7	4	271
225	3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 3129-33	9.5	264
224	Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. <i>Advanced Materials</i> , 2017 , 29, 1606665	24	259
223	Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. <i>RSC Advances</i> , 2012 , 2, 4364	3.7	253
222	Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. <i>ACS Nano</i> , 2011 , 5, 1990-4	16.7	251
221	Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic Therapy. <i>Nano Letters</i> , 2018 , 18, 586-594	11.5	234
220	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO Reduction. <i>ACS Nano</i> , 2018 , 12, 3523-3532	16.7	222
219	Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. <i>Nanoscale</i> , 2011 , 3, 2158-61	7.7	218
218	Symmetry breaking of graphene monolayers by molecular decoration. <i>Physical Review Letters</i> , 2009 , 102, 135501	7.4	213
217	Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. <i>ACS Nano</i> , 2013 , 7, 6278-86	16.7	204
216	Boosting the Photocatalytic Ability of Cu2O Nanowires for CO2 Conversion by MXene Quantum Dots. <i>Advanced Functional Materials</i> , 2019 , 29, 1806500	15.6	204

215	Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. <i>ACS Nano</i> , 2017 , 11, 8998-9009	16.7	199
214	Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite. <i>Advanced Materials</i> , 2017 , 29, 1604764	24	194
213	Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5286		189
212	Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. <i>Biomaterials Science</i> , 2018 , 6, 746-765	7.4	187
211	MetalBrganic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. <i>Nano Research</i> , 2016 , 9, 2234-2243	10	185
210	Synthesis of a MnO2graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. <i>Carbon</i> , 2012 , 50, 4865-4870	10.4	184
209	Synthesis of grapheneBarbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17044		181
208	Functionalization of Biodegradable PLA Nonwoven Fabric as Superoleophilic and Superhydrophobic Material for Efficient Oil Absorption and Oil/Water Separation. <i>ACS Applied Materials & Discomment of the Materials & Discomment of the Materials & Discomment of the Materials & Discommendation of the Materials & Discomment of the Materials & Discommendation of the Materials & Discomment of the Materials & Discommendation of the Materials</i>	9.5	180
207	Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3881-6	11.8	180
206	A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. <i>Advanced Materials</i> , 2017 , 29, 1702243	24	172
205	Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. <i>Nanoscale</i> , 2012 , 4, 293-7	7.7	164
204	One-step growth of graphenellarbon nanotube hybrid materials by chemical vapor deposition. <i>Carbon</i> , 2011 , 49, 2944-2949	10.4	162
203	Organic Dye Based Nanoparticles for Cancer Phototheranostics. <i>Small</i> , 2018 , 14, e1704247	11	160
202	Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. <i>Electrochimica Acta</i> , 2015 , 172, 7-11	6.7	160
201	Effective doping of single-layer graphene from underlying SiO2 substrates. <i>Physical Review B</i> , 2009 , 79,	3.3	160
200	MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8483-8488	13	155
199	Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 2164-9	3.6	155
198	Mo C-Derived Polyoxometalate for NIR-II Photoacoustic Imaging-Guided Chemodynamic/Photothermal Synergistic Therapy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18641-18646	16.4	153

(2011-2014)

197	Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. <i>Nanoscale</i> , 2014 , 6, 7424-9	7.7	152
196	Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. <i>Nanoscale</i> , 2015 , 7, 8159-65	7.7	149
195	RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. <i>ACS Nano</i> , 2012 , 6, 6944-51	16.7	149
194	Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. <i>Electrochemistry Communications</i> , 2015 , 51, 33-36	5.1	147
193	Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. <i>Carbon</i> , 2009 , 47, 1867-1870	10.4	147
192	pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. <i>Chemistry of Materials</i> , 2017 , 29, 5216-5224	9.6	145
191	A graphene-cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. <i>Chemical Communications</i> , 2012 , 48, 6490-2	5.8	145
190	De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development. <i>Cell Metabolism</i> , 2015 , 21, 764-776	24.6	136
189	Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. <i>Carbon</i> , 2011 , 49, 3672-3678	10.4	135
188	Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2723-6	16.4	134
187	Memory devices using a mixture of MoSland graphene oxide as the active layer. <i>Small</i> , 2013 , 9, 727-31	11	130
186	Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. <i>Nature Communications</i> , 2018 , 9, 4433	17.4	127
185	Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. <i>ACS Nano</i> , 2016 , 10, 3622-9	16.7	124
184	Rare-Earth Single-Atom La-N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO Reduction. <i>ACS Nano</i> , 2020 , 14, 15841-15852	16.7	123
183	Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells. <i>ACS Applied Materials & District Mater</i>	9.5	123
182	A hierarchically structured composite of MnO/3D graphene foam for flexible nonenzymatic biosensors. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 110-115	7-3	123
181	Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. <i>Analytical Chemistry</i> , 2011 , 83, 1124-30	7.8	121
180	The formation of a carbon nanotubegraphene oxide coreshell structure and its possible applications. <i>Carbon</i> , 2011 , 49, 5071-5078	10.4	118

179	Supercapacitor electrode based on three-dimensional graphenepolyaniline hybrid. <i>Materials Chemistry and Physics</i> , 2012 , 134, 576-580	4.4	116
178	Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. <i>Chemical Society Reviews</i> , 2014 , 43, 1107-17	58.5	110
177	Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. <i>Nano Energy</i> , 2018 , 48, 284-291	17.1	103
176	Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. <i>Electrochemistry Communications</i> , 2013 , 26, 81-84	5.1	100
175	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. <i>Chemical Science</i> , 2016 , 7, 5118-5125	9.4	97
174	Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable ZnAir Battery and Self-Driven Water Splitting. <i>Advanced Energy Materials</i> , 2020 , 10, 2002896	21.8	95
173	Ferritin-templated synthesis and self-assembly of Pt nanoparticles on a monolithic porous graphene network for electrocatalysis in fuel cells. <i>ACS Applied Materials & Design Company</i> , Interfaces, 2013 , 5, 782-	.7 9.5	90
172	CMOS-Compatible nanowire sensor arrays for detection of cellular bioelectricity. <i>Small</i> , 2009 , 5, 208-12	11	88
171	Phase-controlled synthesis of ENiS nanoparticles confined in carbon nanorods for high performance supercapacitors. <i>Scientific Reports</i> , 2014 , 4, 7054	4.9	86
170	Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. <i>Brain Research Reviews</i> , 2007 , 56, 443-71		86
169	Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multi-Walled Carbon Nanotubes for Solid-State, Flexible, Asymmetric Supercapacitors. <i>Angewandte Chemie</i> , 2015 , 127, 4734-	4739	85
168	Smartphone spectrometer for colorimetric biosensing. <i>Analyst, The</i> , 2016 , 141, 3233-8	5	85
167	Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. <i>Analytical Chemistry</i> , 2015 , 87, 9408-12	7.8	84
166	Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. <i>Nanoscale Horizons</i> , 2016 , 1, 156-160	10.8	84
165	Nanochannel-Confined Graphene Quantum Dots for Ultrasensitive Electrochemical Analysis of Complex Samples. <i>ACS Nano</i> , 2018 , 12, 12673-12681	16.7	84
164	High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. <i>Nanoscale</i> , 2013 , 5, 9860-6	7.7	82
163	An aza-BODIPY photosensitizer for photoacoustic and photothermal imaging guided dual modal cancer phototherapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 1566-1573	7.3	81
162	Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 6593-6600	7-3	78

(2013-2010)

161	Carbohydrate functionalized carbon nanotubes and their applications. <i>Chemical Society Reviews</i> , 2010 , 39, 2925-34	58.5	78	
160	Solid-phase colorimetric sensor based on gold nanoparticle-loaded polymer brushes: lead detection as a case study. <i>Analytical Chemistry</i> , 2013 , 85, 4094-9	7.8	77	
159	Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips. <i>Analytical Chemistry</i> , 2003 , 75, 518-24	7.8	77	
158	A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 17060-5	11.5	76	
157	Photothermal-pH-hypoxia responsive multifunctional nanoplatform for cancer photo-chemo therapy with negligible skin phototoxicity. <i>Biomaterials</i> , 2019 , 221, 119422	15.6	75	
156	In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing. <i>Nanoscale Research Letters</i> , 2011 , 6, 60	5	74	
155	Roles of cholesterol in vesicle fusion and motion. <i>Biophysical Journal</i> , 2009 , 97, 1371-80	2.9	73	
154	A graphene nanoribbon network and its biosensing application. <i>Nanoscale</i> , 2011 , 3, 5156-60	7.7	72	
153	Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. <i>Molecular and Cellular Endocrinology</i> , 2012 , 362, 227-41	4.4	71	
152	Apelin attenuates oxidative stress in human adipocytes. <i>Journal of Biological Chemistry</i> , 2014 , 289, 376	3 <i>-7.4</i>	70	
151	Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells. <i>Bioresource Technology</i> , 2013 , 130, 763-8	11	69	
150	Insight into the charge transport correlation in Aux clusters and graphene quantum dots deposited on TiO2 nanotubes for photoelectrochemical oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11154-11162	13	69	
149	Wax-Sealed Theranostic Nanoplatform for Enhanced Afterglow Imaging Luided Photothermally Triggered Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1804317	15.6	68	
148	Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. <i>Nano Research</i> , 2016 , 9, 1300-1309	10	67	
147	A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. <i>Nanoscale</i> , 2015 , 7, 15477-86	7.7	66	
146	A Highly-Efficient Type I Photosensitizer with Robust Vascular-Disruption Activity for Hypoxic-and-Metastatic Tumor Specific Photodynamic Therapy. <i>Small</i> , 2020 , 16, e2001059	11	66	
145	Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. <i>Nanoscale Research Letters</i> , 2012 , 7, 161	5	66	
144	The electrical detection of lead ions using gold-nanoparticle- and DNAzyme-functionalized graphene device. <i>Advanced Healthcare Materials</i> , 2013 , 2, 271-4	10.1	66	

143	Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes. <i>Journal of Biological Chemistry</i> , 2015 , 290, 14679-91	5.4	65
142	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. <i>Small</i> , 2017 , 13, 1604139	11	63
141	Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin A light chain. <i>Analytical Chemistry</i> , 2014 , 86, 2345-52	7.8	62
140	Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. <i>Nanoscale</i> , 2013 , 5, 8973-6	7.7	62
139	van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. <i>ACS Nano</i> , 2020 , 14, 1185-1195	16.7	58
138	Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide. <i>Electrochimica Acta</i> , 2013 , 111, 441-446	6.7	58
137	Micro- and nanotechnologies for study of cell secretion. <i>Analytical Chemistry</i> , 2011 , 83, 4393-406	7.8	58
136	Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. <i>Sensors and Actuators B: Chemical</i> , 2018 , 259, 364-371	8.5	57
135	Monitoring Dynamic Cellular Redox Homeostasis Using Fluorescence-Switchable Graphene Quantum Dots. <i>ACS Nano</i> , 2016 , 10, 11475-11482	16.7	56
134	Organic Nanoprobe Cocktails for Multilocal and Multicolor Fluorescence Imaging of Reactive Oxygen Species. <i>Advanced Functional Materials</i> , 2017 , 27, 1700493	15.6	55
133	Transdermal Delivery of Anti-Obesity Compounds to Subcutaneous Adipose Tissue with Polymeric Microneedle Patches. <i>Small Methods</i> , 2017 , 1, 1700269	12.8	54
132	Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12576-80	16.4	54
131	Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and Transition-Metal Dichalcogenides and their Application as Supercapacitors. <i>Angewandte Chemie</i> , 2014 , 126, 12784-12788	3.6	54
130	Peptide Functionalized Gold Nanoparticles with Optimized Particle Size and Concentration for Colorimetric Assay Development: Detection of Cardiac Troponin I. <i>ACS Sensors</i> , 2016 , 1, 1416-1422	9.2	52
129	Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing. <i>Small</i> , 2017 , 13, 1700798	11	51
128	Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2716-20	11.8	51
127	Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO reduction and oxygen evolution. <i>Nature Communications</i> , 2021 , 12, 4088	17.4	51
126	Microfiber devices based on carbon materials. <i>Materials Today</i> , 2015 , 18, 215-226	21.8	50

125	Bifunctional N-CoSe2/3D-MXene as Highly Efficient and Durable Cathode for Rechargeable ZnAir Battery 2019 , 1, 432-439		49
124	Biodegradable PLA Nonwoven Fabric with Controllable Wettability for Efficient Water Purification and Photocatalysis Degradation. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2445-2452	8.3	49
123	Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2746-50	11.8	49
122	Quasi-homogeneous carbocatalysis for one-pot selective conversion of carbohydrates to 5-hydroxymethylfurfural using sulfonated graphene quantum dots. <i>Carbon</i> , 2018 , 136, 224-233	10.4	47
121	Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. <i>Journal of Biological Chemistry</i> , 2013 , 288, 15520-31	5.4	47
120	Sugar-based synthesis of Tamiflu and its inhibitory effects on cell secretion. <i>Chemistry - A European Journal</i> , 2010 , 16, 4533-40	4.8	45
119	Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays. <i>Nanoscale</i> , 2009 , 1, 159-63	7.7	44
118	The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound. <i>Carbon</i> , 2012 , 50, 1517-1522	10.4	43
117	Changes in brain cholesterol metabolome after excitotoxicity. <i>Molecular Neurobiology</i> , 2010 , 41, 299-31	3 6.2	43
116	Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. <i>PLoS Biology</i> , 2017 , 15, e2002176	9.7	41
115	Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. <i>Materials Science and Engineering C</i> , 2019 , 94, 247-257	8.3	41
114	Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy. <i>Nano Research</i> , 2017 , 10, 794-801	10	40
113	Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. <i>Nanoscale</i> , 2018 , 10, 5442-5448	7.7	39
112	Curvature of the localized surface plasmon resonance peak. <i>Analytical Chemistry</i> , 2014 , 86, 7399-405	7.8	39
111	Enzymeless multi-sugar fuel cells with high power output based on 3D graphene-Co3O4 hybrid electrodes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9170-6	3.6	39
110	Integrating carbon nanotubes and lipid bilayer for biosensing. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1834-7	11.8	39
109	Sweet graphene quantum dots for imaging carbohydrate receptors in live cells. <i>FlatChem</i> , 2017 , 5, 25-32	25.1	38
108	Molecular-Level Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Self-Activation for Sustainable Energy Systems. <i>Small</i> , 2017 , 13, 1602010	11	37

107	High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. <i>Nanoscale</i> , 2012 , 4, 860-3	7.7	37
106	The noise of membrane capacitance measurements in the whole-cell recording configuration. <i>Biophysical Journal</i> , 2000 , 79, 2162-70	2.9	37
105	Inflection Point of the Localized Surface Plasmon Resonance Peak: A General Method to Improve the Sensitivity. <i>ACS Sensors</i> , 2017 , 2, 235-242	9.2	36
104	Sonochemical fabrication of folic acid functionalized multistimuli-responsive magnetic graphene oxide-based nanocapsules for targeted drug delivery. <i>Chemical Engineering Journal</i> , 2017 , 326, 839-848	14.7	36
103	Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1939-1944	4.8	36
102	Detection of Matrilysin Activity Using Polypeptide Functionalized Reduced Graphene Oxide Field-Effect Transistor Sensor. <i>Analytical Chemistry</i> , 2016 , 88, 2994-8	7.8	35
101	Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. <i>Signal Transduction and Targeted Therapy</i> , 2017 , 2, 17022	21	35
100	Label-Free Electronic Detection of DNA Using Simple Double-Walled Carbon Nanotube Resistors. Journal of Physical Chemistry C, 2008 , 112, 9891-9895	3.8	35
99	Weavable, High-Performance, Solid-State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600102	6.4	35
98	Optimizing the Refractive Index Sensitivity of Plasmonically Coupled Gold Nanoparticles. <i>Plasmonics</i> , 2014 , 9, 773-780	2.4	34
97	Assembly of Graphene Oxide and Au0.7Ag0.3 Alloy Nanoparticles on SiO2: A New Raman Substrate with Ultrahigh Signal-to-Background Ratio. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24080-24084	3.8	34
96	Fe O /Ag/Bi MoO Photoactivatable Nanozyme for Self-Replenishing and Sustainable Cascaded Nanocatalytic Cancer Therapy. <i>Advanced Materials</i> , 2021 , e2106996	24	34
95	Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. <i>Biomaterials Science</i> , 2018 , 6, 779-784	7.4	33
94	Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips. <i>Nanoscale</i> , 2011 , 3, 4854-8	7.7	33
93	Vesicular storage, vesicle trafficking, and secretion of leptin and resistin: the similarities, differences, and interplays. <i>Journal of Endocrinology</i> , 2010 , 206, 27-36	4.7	33
92	Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors. <i>2D Materials</i> , 2015 , 2, 034018	5.9	32
91	Diketopyrrolopyrrole-Based Photosensitizers Conjugated with Chemotherapeutic Agents for Multimodal Tumor Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 30398-30405	9.5	32
90	Gallium-doped tin oxide nano-cuboids for improved dye sensitized solar cell. <i>ACS Applied Materials</i> & amp; Interfaces, 2013 , 5, 11377-82	9.5	31

(2020-2020)

89	Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. <i>Journal of Materials Science</i> , 2020 , 55, 1198-1215	4.3	31
88	Nanoplasmonic Sensing from the Human Vision Perspective. <i>Analytical Chemistry</i> , 2018 , 90, 4916-4924	7.8	29
87	Solution-processable semiconducting thin-film transistors using single-walled carbon nanotubes chemically modified by organic radical initiators. <i>Chemical Communications</i> , 2009 , 7182-4	5.8	29
86	Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release. <i>Microporous and Mesoporous Materials</i> , 2019 , 278, 130-137	5.3	29
85	Amphiphilic graphene quantum dots as a new class of surfactants. <i>Carbon</i> , 2019 , 153, 127-135	10.4	28
84	Enzymatic Degradation of Graphene Quantum Dots by Human Peroxidases. <i>Small</i> , 2019 , 15, e1905405	11	28
83	Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries. <i>ChemSusChem</i> , 2014 , 7, 1407-14	8.3	27
82	Effects of cholesterol oxidation products on exocytosis. <i>Neuroscience Letters</i> , 2010 , 476, 36-41	3.3	27
81	The relationship between cAMP, Ca(2)+, and transport of CFTR to the plasma membrane. <i>Journal of General Physiology</i> , 2001 , 118, 135-44	3.4	27
80	Fluorescent quantum dots derived from PEDOT and their applications in optical imaging and sensing. <i>Materials Horizons</i> , 2014 , 1, 529-534	14.4	26
79	Regulatory networks of non-coding RNAs in brown/beige adipogenesis. <i>Bioscience Reports</i> , 2015 , 35,	4.1	26
78	Fluorescence quenching between unbonded graphene quantum dots and gold nanoparticles upon simple mixing. <i>RSC Advances</i> , 2014 , 4, 35673-35677	3.7	25
77	Remodeling Tumor Microenvironment by Multifunctional Nanoassemblies for Enhanced Photodynamic Cancer Therapy 2020 , 2, 1268-1286		25
76	Template-free synthesis of large anisotropic gold nanostructures on reduced graphene oxide. <i>Nanoscale</i> , 2012 , 4, 3055-9	7.7	24
75	Non-invasive detection of cellular bioelectricity based on carbon nanotube devices for high-throughput drug screening. <i>Advanced Materials</i> , 2010 , 22, 3199-203	24	24
74	Achievement of significantly improved lithium storage for novel clew-like Li 4 Ti 5 O 12 anode assembled by ultrafine nanowires. <i>Journal of Power Sources</i> , 2017 , 350, 49-55	8.9	23
73	Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption. <i>Journal of Colloid and Interface Science</i> , 2020 , 579, 307-314	9.3	23
72	Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. <i>Chemical Communications</i> , 2020 , 56, 5131-5134	5.8	23

71	Solution-processed flexible transparent conductors based on carbon nanotubes and silver grid hybrid films. <i>Nanoscale</i> , 2014 , 6, 4560-5	7.7	22
70	Differential effects of ceramide species on exocytosis in rat PC12 cells. <i>Experimental Brain Research</i> , 2007 , 183, 241-7	2.3	22
69	Facet-Dependent Catalytic Performance of Au Nanocrystals for Electrochemical Nitrogen Reduction. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2020 , 12, 41613-41619	9.5	22
68	An elaborate strategy for fabricating one-dimensional quasi-hollow nanostructure of tin dioxide@carbon composite with improved lithium storage performance. <i>Carbon</i> , 2017 , 118, 634-641	10.4	21
67	Nanopore unstacking of single-stranded DNA helices. <i>Small</i> , 2007 , 3, 1204-8	11	21
66	Improved adhesion and performance of vertically-aligned mesoporous silica-nanochannel film on reduced graphene oxide for direct electrochemical analysis of human serum. <i>Sensors and Actuators B: Chemical</i> , 2019 , 288, 133-140	8.5	20
65	TiN@VN Nanowire Arrays on 3D Carbon for High-Performance Supercapacitors. <i>ChemElectroChem</i> , 2014 , 1, 1027-1030	4.3	20
64	2D single- or double-layered vanadium oxide nanosheet assembled 3D microflowers: controlled synthesis, growth mechanism, and applications. <i>Nanoscale</i> , 2013 , 5, 7790-4	7.7	20
63	Nanoporous tin oxide photoelectrode prepared by electrochemical anodization in aqueous ammonia to improve performance of dye sensitized solar cell. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 023120	2.5	20
62	Nanotopographic Carbon Nanotube Thin-Film Substrate Freezes Lateral Motion of Secretory Vesicles. <i>Advanced Materials</i> , 2009 , 21, 790-793	24	20
61	Detecting metabolic activities of bacteria using a simple carbon nanotube device for high-throughput screening of anti-bacterial drugs. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 4257-61	11.8	20
60	Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. <i>Current Medicinal Chemistry</i> , 2019 , 26, 1389-1405	4.3	20
59	Cryomicroneedles for transdermal cell delivery. <i>Nature Biomedical Engineering</i> , 2021 , 5, 1008-1018	19	20
58	Diketopyrrolopyrrole-Au(I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy. <i>Science China Chemistry</i> , 2020 , 63, 55-64	7.9	20
57	Apelin secretion and expression of apelin receptors in 3T3-L1 adipocytes are differentially regulated by angiotensin type 1 and type 2 receptors. <i>Molecular and Cellular Endocrinology</i> , 2012 , 351, 296-305	4.4	19
56	The crosstalks between adipokines and catecholamines. <i>Molecular and Cellular Endocrinology</i> , 2011 , 332, 261-70	4.4	19
55	Involvement of PKC alpha in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells. <i>Biochemical and Biophysical Research Communications</i> , 2009 , 380, 371-6	3.4	19
54	A Graphene Quantum Dots-Hypochlorite Hybrid System for the Quantitative Fluorescent Determination of Total Antioxidant Capacity. <i>Small</i> , 2017 , 13, 1700709	11	16

(2010-2015)

53	GrapheneBacteria composite for oxygen reduction and lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12873-12879	13	16	
52	Macroporous foam of reduced graphene oxides prepared by lyophilization. <i>Materials Research Bulletin</i> , 2012 , 47, 4335-4339	5.1	16	
51	Differential effects of lysophospholipids on exocytosis in rat PC12 cells. <i>Journal of Neural Transmission</i> , 2010 , 117, 301-8	4.3	16	
50	Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases. <i>Nano Research</i> , 2018 , 11, 1744-1754	10	14	
49	Antimicrobial Microneedle Patch for Treating Deep Cutaneous Fungal Infection. <i>Advanced Therapeutics</i> , 2019 , 2, 1900064	4.9	14	
48	Mobility Enhancement in Carbon Nanotube Transistors by Screening Charge Impurity with Silica Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6975-6979	3.8	14	
47	Mo2C-Derived Polyoxometalate for NIR-II Photoacoustic Imaging-Guided Chemodynamic/Photothermal Synergistic Therapy. <i>Angewandte Chemie</i> , 2019 , 131, 18814-18819	3.6	13	
46	Bidirectional mediation of TiO2 nanowires field effect transistor by dipole moment from purple membrane. <i>Nanoscale</i> , 2010 , 2, 1474-9	7.7	12	
45	Effects of phorbol ester on vesicle dynamics as revealed by total internal reflection fluorescence microscopy. <i>Pflugers Archiv European Journal of Physiology</i> , 2008 , 457, 211-22	4.6	12	
44	Analysis of chloroplast differences in leaves of rice isonuclear alloplasmic lines. <i>Protoplasma</i> , 2018 , 255, 863-871	3.4	11	
43	Ordered Mesoporous Carbons Loading on Graphene after Different Molten Salt Activations for Supercapacitor Applications. <i>Energy Technology</i> , 2018 , 6, 2273-2281	3.5	11	
42	Comparative Cytological and Gene Expression Analysis Reveals Potential Metabolic Pathways and Target Genes Responsive to Salt Stress in Kenaf (Hibiscus cannabinus L.). <i>Journal of Plant Growth Regulation</i> , 2020 , 39, 1245-1260	4.7	11	
41	Spectral and spatial characterization of upconversion luminescent nanocrystals as nanowaveguides. <i>Nanoscale</i> , 2017 , 9, 9238-9245	7.7	10	
40	Transdermal theranostics. <i>View</i> , 2020 , 1, e21	7.8	10	
39	Thiophene-derived polymer dots for imaging endocytic compartments in live cells and broad-spectrum bacterial killing. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 152-157	7.8	10	
38	Labeling and Tracking P2 Purinergic Receptors in Living Cells Using ATP-Conjugated Quantum Dots. <i>Advanced Functional Materials</i> , 2011 , 21, 2776-2780	15.6	10	
37	Aromatic Molecules Doping in Single-Layer Graphene Probed by Raman Spectroscopy and Electrostatic Force Microscopy. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 01AH04	1.4	10	
36	Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. <i>Integrative Biology (United Kingdom)</i> , 2010 , 2, 250-7	3.7	10	

35	Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution. <i>Nano Energy</i> , 2020 , 78, 105347	17.1	10
34	One-pot facile route to fabricate the precursor of sulfonated graphene/N-doped mesoporous carbons composites for supercapacitors. <i>Journal of Materials Science</i> , 2019 , 54, 4180-4191	4.3	10
33	Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. <i>Rare Metals</i> ,1	5.5	10
32	POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy <i>Signal Transduction and Targeted Therapy</i> , 2022 , 7, 86	21	10
31	Three-Dimensional Porous Architectures of Carbon Nanotubes and Graphene Sheets for Energy Applications. <i>Frontiers in Energy Research</i> , 2014 , 2,	3.8	9
30	Interfacing Glycosylated Carbon-Nanotube-Network Devices with Living Cells to Detect Dynamic Secretion of Biomolecules. <i>Angewandte Chemie</i> , 2009 , 121, 2761-2764	3.6	9
29	Detecting translocation of individual single stranded DNA homopolymers through a fabricated nanopore chip. <i>Frontiers in Bioscience - Landmark</i> , 2007 , 12, 2978-83	2.8	9
28	PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation. <i>Pflugers Archiv European Journal of Physiology</i> , 2009 , 458, 1137-49	4.6	8
27	Enhancing electrochemical nitrogen reduction with Ru nanowires via the atomic decoration of Pt. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25142-25147	13	8
26	In Situ Charge-Transfer-Induced Transition from Metallic to Semiconducting Single-Walled Carbon Nanotubes. <i>Chemistry of Materials</i> , 2013 , 25, 4464-4470	9.6	7
25	Reporter-encapsulated liposomes on graphene field effect transistors for signal enhanced detection of physiological enzymes. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3451-6	3.6	7
24	Kainate receptors mediate regulated exocytosis of secretory phospholipase A(2) in SH-SY5Y neuroblastoma cells. <i>NeuroSignals</i> , 2012 , 20, 72-85	1.9	7
23	Reduced graphene oxide foam templated by nickel foam for organ-on-a-chip engineering of cardiac constructs. <i>Materials Science and Engineering C</i> , 2020 , 117, 111344	8.3	7
22	Directional preparation of superhydrophobic magnetic CNF/PVA/MWCNT carbon aerogel. <i>IET Nanobiotechnology</i> , 2019 , 13, 565-570	2	7
21	Spatially Controlled Reduction and Growth of Silver in Hollow Gold Nanoshell Particles. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 10614-10621	3.8	5
20	Double-Shelled Nanostructure of SnO2@C Tube-in-SnO2@C Tube Boosts Lithium-Ion Storage. Energy Technology, 2019 , 7, 1801048	3.5	5
19	Integrative analyses of translatome and transcriptome reveal important translational controls in brown and white adipose regulated by microRNAs. <i>Scientific Reports</i> , 2017 , 7, 5681	4.9	5
18	iTRAQ-based comparative proteomic response analysis reveals regulatory pathways and divergent protein targets associated with salt-stress tolerance in kenaf (Hibiscus cannabinus L.). <i>Industrial Crops and Products</i> , 2020 , 153, 112566	5.9	5

LIST OF PUBLICATIONS

17	Controlling armchair and zigzag edges in oxidative cutting of graphene. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6539-6545	7.1	5
16	On-chip diameter-dependent conversion of metallic to semiconducting single-walled carbon nanotubes by immersion in 2-ethylanthraquinone. <i>RSC Advances</i> , 2012 , 2, 1275-1281	3.7	4
15	Transdermal Photothermal-Pharmacotherapy to Remodel Adipose Tissue for Obesity and Metabolic Disorders <i>ACS Nano</i> , 2022 ,	16.7	4
14	Rational Design of Coplanar Polypyrrole-Based Graphene Hydrogels with Excellent Energy-Storage Performance. <i>Small Structures</i> ,2100073	8.7	4
13	Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER. <i>Carbon</i> , 2021 , 184, 554-561	10.4	4
12	Colorimetric microneedle patches for multiplexed transdermal detection of metabolites. <i>Biosensors and Bioelectronics</i> , 2022 , 212, 114412	11.8	4
11	Bipolar silica nanochannel array for dual-mode electrochemiluminescence and electrochemical immunosensing platform. <i>Sensors and Actuators B: Chemical</i> , 2022 , 368, 132086	8.5	4
10	A Novel Electroactive Polymer for pH-independent Oxygen Sensing. <i>Electroanalysis</i> , 2015 , 27, 2745-275	23	3
9	Fabrication and Characterization of Networked Graphene Devices Based on Ultralarge Single-Layer Graphene Sheets. <i>IEEE Nanotechnology Magazine</i> , 2011 , 10, 467-471	2.6	3
8	The synergistic effect supported Li 4 Ti 5 O 12 anode with advanced lithium storage performance. <i>Materials Chemistry and Physics</i> , 2017 , 201, 362-371	4.4	2
7	Metal nanodots anchored on carbon nanotubes prepared by a facile solid-state redox strategy for superior lithium storage. <i>Functional Materials Letters</i> , 2020 , 13, 2051039	1.2	1
6	Lancing Drug Reservoirs into Subcutaneous Fat to Combat Obesity and Associated Metabolic Diseases. <i>Small</i> , 2020 , 16, e2002872	11	1
5	Synergistically Boosting Sodium-Storage Performance of Na3V2(PO4)3 by Regulating Na Sites and Constructing 3D Interconnected Carbon Nanosheet Frameworks. <i>ACS Applied Energy Materials</i> ,	6.1	1
4	Engineering edge-exposed MoS2 nanoflakes anchored on the 3D cross-linked carbon frameworks for enhanced lithium storage. <i>Functional Materials Letters</i> , 2020 , 13, 2051050	1.2	О
3	Thorn-like nanostructured NiCo2S4 arrays anchoring graphite paper as self-supported electrodes for ultrahigh rate flexible supercapacitors. <i>Electrochimica Acta</i> , 2021 , 399, 139420	6.7	О
2	Facile Synthesis of TiO2 Microspheres with Super High Rate Performance. <i>Advanced Materials Research</i> , 2012 , 573-574, 1198-1202	0.5	
1	Macromol. Rapid Commun. 23/2016. Macromolecular Rapid Communications, 2016, 37, 1980-1980	4.8	