
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8966848/publications.pdf

Version: 2024-02-01

DENC CHEN

#	Article	IF	CITATIONS
1	Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small, 2015, 11, 1620-1636.	5.2	1,770
2	Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 2012, 41, 2283-2307.	18.7	1,591
3	Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews, 2014, 43, 7067-7098.	18.7	1,547
4	3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano, 2012, 6, 3206-3213.	7.3	1,510
5	In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. Journal of Physical Chemistry C, 2009, 113, 10842-10846.	1.5	702
6	Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562, 254-258.	13.7	644
7	Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Advanced Materials, 2019, 31, e1808283.	11.1	603
8	Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 2010, 4, 3201-3208.	7.3	571
9	Doping Single‣ayer Graphene with Aromatic Molecules. Small, 2009, 5, 1422-1426.	5.2	537
10	Revealing the tunable photoluminescence properties of graphene quantum dots. Journal of Materials Chemistry C, 2014, 2, 6954-6960.	2.7	530
11	Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano, 2012, 6, 2394-2400.	7.3	520
12	Electrical Detection of DNA Hybridization with Singleâ€Base Specificity Using Transistors Based on CVDâ€Grown Graphene Sheets. Advanced Materials, 2010, 22, 1649-1653.	11.1	516
13	Surface Modified Ti ₃ C ₂ MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 40077-40086.	4.0	491
14	Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chemical Communications, 2012, 48, 10660.	2.2	471
15	Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe ³⁺ Sensing. Advanced Functional Materials, 2014, 24, 3021-3026.	7.8	446
16	One-Pot Synthesis of Carbon-Coated SnO ₂ Nanocolloids with Improved Reversible Lithium Storage Properties. Chemistry of Materials, 2009, 21, 2868-2874.	3.2	421
17	Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. Advanced Materials, 2017, 29, 1606665.	11.1	419
18	Nanoelectronic biosensors based on CVD grown graphene. Nanoscale, 2010, 2, 1485.	2.8	408

#	Article	IF	CITATIONS
19	Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chemical Society Reviews, 2016, 45, 2239-2262.	18.7	391
20	Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. Nano Letters, 2004, 4, 1333-1337.	4.5	385
21	Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today, 2015, 10, 213-239.	6.2	356
22	Boosting the Photocatalytic Ability of Cu ₂ O Nanowires for CO ₂ Conversion by MXene Quantum Dots. Advanced Functional Materials, 2019, 29, 1806500.	7.8	354
23	Graphene-based biosensors for detection of bacteria and their metabolic activities. Journal of Materials Chemistry, 2011, 21, 12358.	6.7	343
24	Probing Single DNA Molecule Transport Using Fabricated Nanopores. Nano Letters, 2004, 4, 2293-2298.	4.5	341
25	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO ₂ Reduction. ACS Nano, 2018, 12, 3523-3532.	7.3	341
26	Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multiâ€Walled Carbon Nanotubes for Solidâ€State, Flexible, Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 4651-4656.	7.2	334
27	Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors. ACS Nano, 2011, 5, 5038-5044.	7.3	305
28	A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. Advanced Materials, 2017, 29, 1702243.	11.1	303
29	Interfacing Live Cells with Nanocarbon Substrates. Langmuir, 2010, 26, 2244-2247.	1.6	301
30	Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic Therapy. Nano Letters, 2018, 18, 586-594.	4.5	294
31	3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Applied Materials & Interfaces, 2012, 4, 3129-3133.	4.0	292
32	Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Advances, 2012, 2, 4364.	1.7	285
33	Rare-Earth Single-Atom La–N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO ₂ Reduction. ACS Nano, 2020, 14, 15841-15852.	7.3	283
34	Mo ₂ Câ€Derived Polyoxometalate for NIRâ€II Photoacoustic Imagingâ€Guided Chemodynamic/Photothermal Synergistic Therapy. Angewandte Chemie - International Edition, 2019, 58, 18641-18646.	7.2	281
35	Electrical Detection of Metal Ions Using Field-Effect Transistors Based on Micropatterned Reduced Graphene Oxide Films. ACS Nano, 2011, 5, 1990-1994.	7.3	279
36	Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nature Communications, 2021, 12, 4088.	5.8	259

#	Article	IF	CITATIONS
37	Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomaterials Science, 2018, 6, 746-765.	2.6	250
38	Functionalization of Biodegradable PLA Nonwoven Fabric as Superoleophilic and Superhydrophobic Material for Efficient Oil Absorption and Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 5968-5973.	4.0	241
39	Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. ACS Nano, 2017, 11, 8998-9009.	7.3	239
40	Graphene Quantum Dots as Universal Fluorophores and Their Use in Revealing Regulated Trafficking of Insulin Receptors in Adipocytes. ACS Nano, 2013, 7, 6278-6286.	7.3	229
41	Organic Dye Based Nanoparticles for Cancer Phototheranostics. Small, 2018, 14, e1704247.	5.2	226
42	Symmetry Breaking of Graphene Monolayers by Molecular Decoration. Physical Review Letters, 2009, 102, 135501.	2.9	224
43	Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale, 2011, 3, 2158.	2.8	223
44	Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite. Advanced Materials, 2017, 29, 1604764.	11.1	220
45	Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Research, 2016, 9, 2234-2243.	5.8	215
46	Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon, 2012, 50, 4865-4870.	5.4	214
47	Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. Journal of Materials Chemistry, 2012, 22, 5286.	6.7	210
48	Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Đriven Water Splitting. Advanced Energy Materials, 2020, 10, 2002896.	10.2	210
49	Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nature Communications, 2018, 9, 4433.	5.8	209
50	De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development. Cell Metabolism, 2015, 21, 764-776.	7.2	201
51	Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochimica Acta, 2015, 172, 7-11.	2.6	200
52	Synthesis of graphene–carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. Journal of Materials Chemistry, 2012, 22, 17044.	6.7	197
53	Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosensors and Bioelectronics, 2011, 26, 3881-3886.	5.3	191
54	Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale, 2012, 4, 293-297.	2.8	185

#	Article	IF	CITATIONS
55	One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon, 2011, 49, 2944-2949.	5.4	182
56	MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 8483-8488.	5.2	178
57	Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 2010, 12, 2164.	1.3	176
58	Free-standing electrochemical electrode based on Ni(OH) ₂ /3D graphene foam for nonenzymatic glucose detection. Nanoscale, 2014, 6, 7424-7429.	2.8	174
59	Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale, 2015, 7, 8159-8165.	2.8	174
60	Effective doping of single-layer graphene from underlying <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SiO</mml:mtext></mml:mrow><mml:mn: Physical Review B, 2009, 79, .</mml:mn: </mml:msub></mml:mrow></mml:math 	>2 <td>nn></td>	nn>
61	RGD-Peptide Functionalized Graphene Biomimetic Live-Cell Sensor for Real-Time Detection of Nitric Oxide Molecules. ACS Nano, 2012, 6, 6944-6951.	7.3	172
62	pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. Chemistry of Materials, 2017, 29, 5216-5224.	3.2	170
63	Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochemistry Communications, 2015, 51, 33-36.	2.3	169
64	Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon, 2011, 49, 3672-3678.	5.4	158
65	A graphene–cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. Chemical Communications, 2012, 48, 6490.	2.2	155
66	Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. Carbon, 2009, 47, 1867-1870.	5.4	152
67	Interfacing Glycosylated Carbonâ€Nanotubeâ€Network Devices with Living Cells to Detect Dynamic Secretion of Biomolecules. Angewandte Chemie - International Edition, 2009, 48, 2723-2726.	7.2	148
68	Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. ACS Nano, 2016, 10, 3622-3629.	7.3	145
69	Memory Devices Using a Mixture of MoS ₂ and Graphene Oxide as the Active Layer. Small, 2013, 9, 727-731.	5.2	144
70	Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy, 2018, 48, 284-291.	8.2	143
71	A hierarchically structured composite of Mn ₃ O ₄ /3D graphene foam for flexible nonenzymatic biosensors. Journal of Materials Chemistry B, 2013, 1, 110-115.	2.9	137
72	Three-Dimensional Graphene-Carbon Nanotube Hybrid for High-Performance Enzymatic Biofuel Cells. ACS Applied Materials & Interfaces, 2014, 6, 3387-3393.	4.0	136

#	Article	IF	CITATIONS
73	Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chemical Society Reviews, 2014, 43, 1107-1117.	18.7	135
74	Fe ₃ O ₄ /Ag/Bi ₂ MoO ₆ Photoactivatable Nanozyme for Selfâ€Replenishing and Sustainable Cascaded Nanocatalytic Cancer Therapy. Advanced Materials, 2021, 33, e2106996.	11.1	134
75	The formation of a carbon nanotube–graphene oxide core–shell structure and its possible applications. Carbon, 2011, 49, 5071-5078.	5.4	130
76	Nanochannel-Confined Graphene Quantum Dots for Ultrasensitive Electrochemical Analysis of Complex Samples. ACS Nano, 2018, 12, 12673-12681.	7.3	129
77	Quantum Dots with Phenylboronic Acid Tags for Specific Labeling of Sialic Acids on Living Cells. Analytical Chemistry, 2011, 83, 1124-1130.	3.2	128
78	Supercapacitor electrode based on three-dimensional graphene–polyaniline hybrid. Materials Chemistry and Physics, 2012, 134, 576-580.	2.0	125
79	Smartphone spectrometer for colorimetric biosensing. Analyst, The, 2016, 141, 3233-3238.	1.7	125
80	Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and Transitionâ€Metal Dichalcogenides and their Application as Supercapacitors. Angewandte Chemie - International Edition, 2014, 53, 12576-12580.	7.2	119
81	A Highlyâ€Efficient Type I Photosensitizer with Robust Vascularâ€Disruption Activity for Hypoxicâ€andâ€Metastatic Tumor Specific Photodynamic Therapy. Small, 2020, 16, e2001059.	5.2	116
82	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chemical Science, 2016, 7, 5118-5125.	3.7	113
83	Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. Electrochemistry Communications, 2013, 26, 81-84.	2.3	109
84	Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions. Journal of Materials Chemistry B, 2017, 5, 6593-6600.	2.9	106
85	Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors. Scientific Reports, 2014, 4, 7054.	1.6	101
86	Photothermal-pH-hypoxia responsive multifunctional nanoplatform for cancer photo-chemo therapy with negligible skin phototoxicity. Biomaterials, 2019, 221, 119422.	5.7	101
87	Peptide-Assembled Graphene Oxide as a Fluorescent Turn-On Sensor for Lipopolysaccharide (Endotoxin) Detection. Analytical Chemistry, 2015, 87, 9408-9412.	3.2	100
88	van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. ACS Nano, 2020, 14, 1185-1195.	7.3	100
89	Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons, 2016, 1, 156-160.	4.1	99
90	CMOS ompatible Nanowire Sensor Arrays for Detection of Cellular Bioelectricity. Small, 2009, 5, 208-212.	5.2	98

#	Article	IF	CITATIONS
91	Comparison of biochemical effects of statins and fish oil in brain: The battle of the titans. Brain Research Reviews, 2007, 56, 443-471.	9.1	97
92	"Wax‧ealed―Theranostic Nanoplatform for Enhanced Afterglow Imaging–Guided Photothermally Triggered Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1804317.	7.8	97
93	Cryomicroneedles for transdermal cell delivery. Nature Biomedical Engineering, 2021, 5, 1008-1018.	11.6	97
94	Ferritin-Templated Synthesis and Self-Assembly of Pt Nanoparticles on a Monolithic Porous Graphene Network for Electrocatalysis in Fuel Cells. ACS Applied Materials & Interfaces, 2013, 5, 782-787.	4.0	96
95	An aza-BODIPY photosensitizer for photoacoustic and photothermal imaging guided dual modal cancer phototherapy. Journal of Materials Chemistry B, 2017, 5, 1566-1573.	2.9	96
96	In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing. Nanoscale Research Letters, 2011, 6, 60.	3.1	93
97	High capacitive performance of flexible and binder-free graphene–polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. Nanoscale, 2013, 5, 9860.	2.8	93
98	Apelin Attenuates Oxidative Stress in Human Adipocytes. Journal of Biological Chemistry, 2014, 289, 3763-3774.	1.6	92
99	Roles of Cholesterol in Vesicle Fusion and Motion. Biophysical Journal, 2009, 97, 1371-1380.	0.2	91
100	Bifunctional N-CoSe ₂ /3D-MXene as Highly Efficient and Durable Cathode for Rechargeable Zn–Air Battery. , 2019, 1, 432-439.		90
101	Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Molecular and Cellular Endocrinology, 2012, 362, 227-241.	1.6	89
102	Insight into the charge transport correlation in Au _x clusters and graphene quantum dots deposited on TiO ₂ nanotubes for photoelectrochemical oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 11154-11162.	5.2	89
103	Transdermal Delivery of Antiâ€Obesity Compounds to Subcutaneous Adipose Tissue with Polymeric Microneedle Patches. Small Methods, 2017, 1, 1700269.	4.6	88
104	Carbohydrate functionalized carbon nanotubes and their applications. Chemical Society Reviews, 2010, 39, 2925.	18.7	87
105	Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes. Journal of Biological Chemistry, 2015, 290, 14679-14691.	1.6	87
106	Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Research, 2016, 9, 1300-1309.	5.8	87
107	Biodegradable PLA Nonwoven Fabric with Controllable Wettability for Efficient Water Purification and Photocatalysis Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 2445-2452.	3.2	87
108	Amperometric Detection of Quantal Catecholamine Secretion from Individual Cells on Micromachined Silicon Chips. Analytical Chemistry, 2003, 75, 518-524.	3.2	86

#	Article	IF	CITATIONS
109	Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells. Bioresource Technology, 2013, 130, 763-768.	4.8	86
110	Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sensors and Actuators B: Chemical, 2018, 259, 364-371.	4.0	86
111	Solid-Phase Colorimetric Sensor Based on Gold Nanoparticle-Loaded Polymer Brushes: Lead Detection as a Case Study. Analytical Chemistry, 2013, 85, 4094-4099.	3.2	84
112	A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17060-17065.	3.3	83
113	A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. Nanoscale, 2015, 7, 15477-15486.	2.8	83
114	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. Small, 2017, 13, 1604139.	5.2	83
115	Organic Nanoprobe Cocktails for Multilocal and Multicolor Fluorescence Imaging of Reactive Oxygen Species. Advanced Functional Materials, 2017, 27, 1700493.	7.8	82
116	Template-Sacrificing Synthesis of Well-Defined Asymmetrically Coordinated Single-Atom Catalysts for Highly Efficient CO ₂ Electrocatalytic Reduction. ACS Nano, 2022, 16, 2110-2119.	7.3	82
117	A graphene nanoribbon network and its biosensing application. Nanoscale, 2011, 3, 5156.	2.8	81
118	Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biology, 2017, 15, e2002176.	2.6	81
119	Peptide Functionalized Gold Nanoparticles with Optimized Particle Size and Concentration for Colorimetric Assay Development: Detection of Cardiac Troponin I. ACS Sensors, 2016, 1, 1416-1422.	4.0	79
120	Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. Nanoscale Research Letters, 2012, 7, 161.	3.1	75
121	Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. Nanoscale, 2013, 5, 8973.	2.8	75
122	The Electrical Detection of Lead Ions Using Goldâ€Nanoparticle―and DNAzymeâ€Functionalized Graphene Device. Advanced Healthcare Materials, 2013, 2, 271-274.	3.9	73
123	Micro- and Nanotechnologies for Study of Cell Secretion. Analytical Chemistry, 2011, 83, 4393-4406.	3.2	72
124	Biofunctionalized Gold Nanoparticles for Colorimetric Sensing of Botulinum Neurotoxin A Light Chain. Analytical Chemistry, 2014, 86, 2345-2352.	3.2	71
125	Monitoring Dynamic Cellular Redox Homeostasis Using Fluorescence-Switchable Graphene Quantum Dots. ACS Nano, 2016, 10, 11475-11482.	7.3	71
126	Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide. Electrochimica Acta, 2013, 111, 441-446.	2.6	69

#	Article	IF	CITATIONS
127	Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption. Journal of Colloid and Interface Science, 2020, 579, 307-314.	5.0	63
128	Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. Biosensors and Bioelectronics, 2009, 24, 2716-2720.	5.3	62
129	Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing. Small, 2017, 13, 1700798.	5.2	60
130	Quasi-homogeneous carbocatalysis for one-pot selective conversion of carbohydrates to 5-hydroxymethylfurfural using sulfonated graphene quantum dots. Carbon, 2018, 136, 224-233.	5.4	60
131	POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy. Signal Transduction and Targeted Therapy, 2022, 7, 86.	7.1	59
132	Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Materials Science and Engineering C, 2019, 94, 247-257.	3.8	58
133	Control of Adipogenesis by the Autocrine Interplays between Angiotensin 1–7/Mas Receptor and Angiotensin II/AT1 Receptor Signaling Pathways. Journal of Biological Chemistry, 2013, 288, 15520-15531.	1.6	57
134	Microfiber devices based on carbon materials. Materials Today, 2015, 18, 215-226.	8.3	57
135	Amphiphilic graphene quantum dots as a new class of surfactants. Carbon, 2019, 153, 127-135.	5.4	55
136	Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays. Nanoscale, 2009, 1, 159.	2.8	54
137	Changes in Brain Cholesterol Metabolome After Excitotoxicity. Molecular Neurobiology, 2010, 41, 299-313.	1.9	54
138	Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires. Biosensors and Bioelectronics, 2011, 26, 2746-2750.	5.3	52
139	Optimizing the Refractive Index Sensitivity of Plasmonically Coupled Gold Nanoparticles. Plasmonics, 2014, 9, 773-780.	1.8	52
140	Inflection Point of the Localized Surface Plasmon Resonance Peak: A General Method to Improve the Sensitivity. ACS Sensors, 2017, 2, 235-242.	4.0	52
141	Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy. Nano Research, 2017, 10, 794-801.	5.8	50
142	Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. Nanoscale, 2018, 10, 5442-5448.	2.8	50
143	Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. Journal of Materials Science, 2020, 55, 1198-1215.	1.7	50
144	Sugarâ€Based Synthesis of Tamiflu and Its Inhibitory Effects on Cell Secretion. Chemistry - A European Journal, 2010, 16, 4533-4540.	1.7	48

#	Article	IF	CITATIONS
145	Curvature of the Localized Surface Plasmon Resonance Peak. Analytical Chemistry, 2014, 86, 7399-7405.	3.2	48
146	Weavable, Highâ€Performance, Solidâ€State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. Advanced Electronic Materials, 2016, 2, 1600102.	2.6	47
147	Molecular‣evel Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Selfâ€Activation for Sustainable Energy Systems. Small, 2017, 13, 1602010.	5.2	47
148	Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. Signal Transduction and Targeted Therapy, 2017, 2, 17022.	7.1	47
149	Bipolar silica nanochannel array for dual-mode electrochemiluminescence and electrochemical immunosensing platform. Sensors and Actuators B: Chemical, 2022, 368, 132086.	4.0	47
150	The Noise of Membrane Capacitance Measurements in the Whole-Cell Recording Configuration. Biophysical Journal, 2000, 79, 2162-2170.	0.2	46
151	Integrating carbon nanotubes and lipid bilayer for biosensing. Biosensors and Bioelectronics, 2010, 25, 1834-1837.	5.3	46
152	Sweet graphene quantum dots for imaging carbohydrate receptors in live cells. FlatChem, 2017, 5, 25-32.	2.8	46
153	Enzymatic Degradation of Graphene Quantum Dots by Human Peroxidases. Small, 2019, 15, e1905405.	5.2	46
154	The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound. Carbon, 2012, 50, 1517-1522.	5.4	45
155	Detection of Matrilysin Activity Using Polypeptide Functionalized Reduced Graphene Oxide Field-Effect Transistor Sensor. Analytical Chemistry, 2016, 88, 2994-2998.	3.2	45
156	High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale, 2012, 4, 860-863.	2.8	43
157	Highly Swellable, Dualâ€Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. Macromolecular Rapid Communications, 2016, 37, 1939-1944.	2.0	43
158	Nanoplasmonic Sensing from the Human Vision Perspective. Analytical Chemistry, 2018, 90, 4916-4924.	3.2	43
159	Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER. Carbon, 2021, 184, 554-561.	5.4	43
160	Nanoelectronic Biosensing of Dynamic Cellular Activities Based on Nanostructured Materials. Advanced Materials, 2010, 22, 2818-2823.	11.1	42
161	Enzymeless multi-sugar fuel cells with high power output based on 3D graphene–Co3O4 hybrid electrodes. Physical Chemistry Chemical Physics, 2013, 15, 9170.	1.3	42
162	Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. Biomaterials Science, 2018, 6, 779-784.	2.6	42

#	Article	IF	CITATIONS
163	Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release. Microporous and Mesoporous Materials, 2019, 278, 130-137.	2.2	42
164	Facet-Dependent Catalytic Performance of Au Nanocrystals for Electrochemical Nitrogen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 41613-41619.	4.0	42
165	Sonochemical fabrication of folic acid functionalized multistimuli-responsive magnetic graphene oxide-based nanocapsules for targeted drug delivery. Chemical Engineering Journal, 2017, 326, 839-848.	6.6	40
166	Remodeling Tumor Microenvironment by Multifunctional Nanoassemblies for Enhanced Photodynamic Cancer Therapy. , 2020, 2, 1268-1286.		40
167	Diketopyrrolopyrrole-Based Photosensitizers Conjugated with Chemotherapeutic Agents for Multimodal Tumor Therapy. ACS Applied Materials & Interfaces, 2017, 9, 30398-30405.	4.0	39
168	Vesicular storage, vesicle trafficking, and secretion of leptin and resistin: the similarities, differences, and interplays. Journal of Endocrinology, 2010, 206, 27-36.	1.2	38
169	Improved adhesion and performance of vertically-aligned mesoporous silica-nanochannel film on reduced graphene oxide for direct electrochemical analysis of human serum. Sensors and Actuators B: Chemical, 2019, 288, 133-140.	4.0	38
170	Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution. Nano Energy, 2020, 78, 105347.	8.2	38
171	Colorimetric microneedle patches for multiplexed transdermal detection of metabolites. Biosensors and Bioelectronics, 2022, 212, 114412.	5.3	38
172	Label-Free Electronic Detection of DNA Using Simple Double-Walled Carbon Nanotube Resistors. Journal of Physical Chemistry C, 2008, 112, 9891-9895.	1.5	37
173	Assembly of Graphene Oxide and Au0.7Ag0.3 Alloy Nanoparticles on SiO2: A New Raman Substrate with Ultrahigh Signal-to-Background Ratio. Journal of Physical Chemistry C, 2011, 115, 24080-24084.	1.5	36
174	Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips. Nanoscale, 2011, 3, 4854.	2.8	34
175	Solution-processable semiconducting thin-film transistors using single-walled carbon nanotubes chemically modified by organic radical initiators. Chemical Communications, 2009, , 7182.	2.2	33
176	Gallium-Doped Tin Oxide Nano-Cuboids for Improved Dye Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2013, 5, 11377-11382.	4.0	33
177	Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors. 2D Materials, 2015, 2, 034018.	2.0	33
178	Effects of cholesterol oxidation products on exocytosis. Neuroscience Letters, 2010, 476, 36-41.	1.0	32
179	Transdermal Photothermal-Pharmacotherapy to Remodel Adipose Tissue for Obesity and Metabolic Disorders. ACS Nano, 2022, 16, 1813-1825.	7.3	32
180	Fluorescence quenching between unbonded graphene quantum dots and gold nanoparticles upon simple mixing. RSC Advances, 2014, 4, 35673-35677.	1.7	31

#	Article	IF	CITATIONS
181	Fluorescent quantum dots derived from PEDOT and their applications in optical imaging and sensing. Materials Horizons, 2014, 1, 529-534.	6.4	30
182	Four‣ayer Tin–Carbon Nanotube Yolk–Shell Materials for Highâ€Performance Lithium″on Batteries. ChemSusChem, 2014, 7, 1407-1414.	3.6	30
183	Graphene–bacteria composite for oxygen reduction and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 12873-12879.	5.2	30
184	Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Metals, 2022, 41, 56-66.	3.6	29
185	The Relationship between Camp, Ca2+, and Transport of Cftr to the Plasma Membrane. Journal of General Physiology, 2001, 118, 135-144.	0.9	28
186	Template-free synthesis of large anisotropic gold nanostructures on reduced graphene oxide. Nanoscale, 2012, 4, 3055.	2.8	28
187	Regulatory networks of non-coding RNAs in brown/beige adipogenesis. Bioscience Reports, 2015, 35, .	1.1	28
188	Antimicrobial Microneedle Patch for Treating Deep Cutaneous Fungal Infection. Advanced Therapeutics, 2019, 2, 1900064.	1.6	28
189	Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 5131-5134.	2.2	28
190	2D single- or double-layered vanadium oxide nanosheet assembled 3D microflowers: controlled synthesis, growth mechanism, and applications. Nanoscale, 2013, 5, 7790.	2.8	27
191	Nonâ€invasive Detection of Cellular Bioelectricity Based on Carbon Nanotube Devices for Highâ€Throughput Drug Screening. Advanced Materials, 2010, 22, 3199-3203.	11.1	26
192	Diketopyrrolopyrrole-Au(I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy. Science China Chemistry, 2020, 63, 55-64.	4.2	26
193	Differential effects of ceramide species on exocytosis in rat PC12 cells. Experimental Brain Research, 2007, 183, 241-247.	0.7	25
194	Nanotopographic Carbon Nanotube Thinâ€Film Substrate Freezes Lateral Motion of Secretory Vesicles. Advanced Materials, 2009, 21, 790-793.	11.1	24
195	Achievement of significantly improved lithium storage for novel clew-like Li 4 Ti 5 O 12 anode assembled by ultrafine nanowires. Journal of Power Sources, 2017, 350, 49-55.	4.0	24
196	Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. Current Medicinal Chemistry, 2019, 26, 1389-1405.	1.2	24
197	Detecting metabolic activities of bacteria using a simple carbon nanotube device for high-throughput screening of anti-bacterial drugs. Biosensors and Bioelectronics, 2011, 26, 4257-4261.	5.3	23
198	Nanopore Unstacking of Single-Stranded DNA Helices. Small, 2007, 3, 1204-1208.	5.2	22

#	Article	IF	CITATIONS
199	Solution-processed flexible transparent conductors based on carbon nanotubes and silver grid hybrid films. Nanoscale, 2014, 6, 4560-4565.	2.8	22
200	TiN@VN Nanowire Arrays on 3D Carbon for Highâ€Performance Supercapacitors. ChemElectroChem, 2014, 1, 1027-1030.	1.7	22
201	An elaborate strategy for fabricating one-dimensional quasi-hollow nanostructure of tin dioxide@carbon composite with improved lithium storage performance. Carbon, 2017, 118, 634-641.	5.4	22
202	Enhancing electrochemical nitrogen reduction with Ru nanowires <i>via</i> the atomic decoration of Pt. Journal of Materials Chemistry A, 2020, 8, 25142-25147.	5.2	22
203	Involvement of PKCα in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells. Biochemical and Biophysical Research Communications, 2009, 380, 371-376.	1.0	21
204	The crosstalks between adipokines and catecholamines. Molecular and Cellular Endocrinology, 2011, 332, 261-270.	1.6	21
205	Apelin secretion and expression of apelin receptors in 3T3-L1 adipocytes are differentially regulated by angiotensin type 1 and type 2 receptors. Molecular and Cellular Endocrinology, 2012, 351, 296-305.	1.6	21
206	Nanoporous tin oxide photoelectrode prepared by electrochemical anodization in aqueous ammonia to improve performance of dye sensitized solar cell. Journal of Renewable and Sustainable Energy, 2013, 5, 023120.	0.8	21
207	A Graphene Quantum Dots–Hypochlorite Hybrid System for the Quantitative Fluorescent Determination of Total Antioxidant Capacity. Small, 2017, 13, 1700709.	5.2	21
208	Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases. Nano Research, 2018, 11, 1744-1754.	5.8	20
209	Mo 2 Câ€Derived Polyoxometalate for NIRâ€II Photoacoustic Imagingâ€Guided Chemodynamic/Photothermal Synergistic Therapy. Angewandte Chemie, 2019, 131, 18814-18819.	1.6	20
210	Comparative Cytological and Gene Expression Analysis Reveals Potential Metabolic Pathways and Target Genes Responsive to Salt Stress in Kenaf (Hibiscus cannabinus L.). Journal of Plant Growth Regulation, 2020, 39, 1245-1260.	2.8	20
211	Differential effects of lysophospholipids on exocytosis in rat PC12 cells. Journal of Neural Transmission, 2010, 117, 301-308.	1.4	19
212	Macroporous foam of reduced graphene oxides prepared by lyophilization. Materials Research Bulletin, 2012, 47, 4335-4339.	2.7	18
213	Effects of phorbol ester on vesicle dynamics as revealed by total internal reflection fluorescence microscopy. Pflugers Archiv European Journal of Physiology, 2008, 457, 211-222.	1.3	17
214	Transdermal theranostics. View, 2020, 1, e21.	2.7	17
215	Directional preparation of superhydrophobic magnetic CNF/PVA/MWCNT carbon aerogel. IET Nanobiotechnology, 2019, 13, 565-570.	1.9	16
216	Bidirectional mediation of TiO2 nanowires field effect transistor by dipole moment from purple membrane. Nanoscale, 2010, 2, 1474.	2.8	15

#	Article	IF	CITATIONS
217	Mobility Enhancement in Carbon Nanotube Transistors by Screening Charge Impurity with Silica Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 6975-6979.	1.5	15
218	Analysis of chloroplast differences in leaves of rice isonuclear alloplasmic lines. Protoplasma, 2018, 255, 863-871.	1.0	15
219	Distinctive Formation of Bifunctional ZnCoS-rGO 3D Hollow Microsphere Flowers with Excellent Energy Storage Performances. Chemistry of Materials, 2022, 34, 5896-5911.	3.2	15
220	Three-Dimensional Porous Architectures of Carbon Nanotubes and Graphene Sheets for Energy Applications. Frontiers in Energy Research, 2014, 2, .	1.2	14
221	Reduced graphene oxide foam templated by nickel foam for organ-on-a-chip engineering of cardiac constructs. Materials Science and Engineering C, 2020, 117, 111344.	3.8	14
222	Spectral and spatial characterization of upconversion luminescent nanocrystals as nanowaveguides. Nanoscale, 2017, 9, 9238-9245.	2.8	13
223	Ordered Mesoporous Carbons Loading on Graphene after Different Molten Salt Activations for Supercapacitor Applications. Energy Technology, 2018, 6, 2273-2281.	1.8	13
224	One-pot facile route to fabricate the precursor of sulfonated graphene/N-doped mesoporous carbons composites for supercapacitors. Journal of Materials Science, 2019, 54, 4180-4191.	1.7	13
225	Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integrative Biology (United Kingdom), 2010, 2, 250.	0.6	12
226	Rational Design of Coplanar Polypyrroleâ€Based Graphene Hydrogels with Excellent Energyâ€Storage Performance. Small Structures, 2021, 2, 2100073.	6.9	12
227	Thorn-like nanostructured NiCo2S4 arrays anchoring graphite paper as self-supported electrodes for ultrahigh rate flexible supercapacitors. Electrochimica Acta, 2021, 399, 139420.	2.6	12
228	Labeling and Tracking P2 Purinergic Receptors in Living Cells Using ATPâ€Conjugated Quantum Dots. Advanced Functional Materials, 2011, 21, 2776-2780.	7.8	11
229	Thiophene-derived polymer dots for imaging endocytic compartments in live cells and broad-spectrum bacterial killing. Materials Chemistry Frontiers, 2017, 1, 152-157.	3.2	11
230	iTRAQ-based comparative proteomic response analysis reveals regulatory pathways and divergent protein targets associated with salt-stress tolerance in kenaf (Hibiscus cannabinus L.). Industrial Crops and Products, 2020, 153, 112566.	2.5	11
231	Detecting translocation of individual single stranded DNA homopolymers through a fabricated nanopore chip. Frontiers in Bioscience - Landmark, 2007, 12, 2978.	3.0	10
232	PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation. Pflugers Archiv European Journal of Physiology, 2009, 458, 1137-1149.	1.3	10
233	Aromatic Molecules Doping in Single-Layer Graphene Probed by Raman Spectroscopy and Electrostatic Force Microscopy. Japanese Journal of Applied Physics, 2010, 49, 01AH04.	0.8	10
234	Integrative analyses of translatome and transcriptome reveal important translational controls in brown and white adipose regulated by microRNAs. Scientific Reports, 2017, 7, 5681.	1.6	10

#	Article	IF	CITATIONS
235	Synergistically Boosting Sodium-Storage Performance of Na ₃ V ₂ (PO ₄) ₃ by Regulating Na Sites and Constructing 3D Interconnected Carbon Nanosheet Frameworks. ACS Applied Energy Materials, 2022, 5, 2542-2552.	2.5	10
236	One Stone for Multiple Birds: A Versatile Cross-Linked Poly(dimethyl siloxane) Binder Boosts Cycling Life and Rate Capability of an NCM 523 Cathode at 4.6 V. ACS Applied Materials & Interfaces, 2022, 14, 16245-16257.	4.0	10
237	Kainate Receptors Mediate Regulated Exocytosis of Secretory Phospholipase A2 in SH-SY5Y Neuroblastoma Cells. NeuroSignals, 2012, 20, 72-85.	0.5	9
238	In Situ Charge-Transfer-Induced Transition from Metallic to Semiconducting Single-Walled Carbon Nanotubes. Chemistry of Materials, 2013, 25, 4464-4470.	3.2	9
239	Spatially Controlled Reduction and Growth of Silver in Hollow Gold Nanoshell Particles. Journal of Physical Chemistry C, 2019, 123, 10614-10621.	1.5	9
240	Reporter-encapsulated liposomes on graphene field effect transistors for signal enhanced detection of physiological enzymes. Physical Chemistry Chemical Physics, 2015, 17, 3451-3456.	1.3	8
241	Controlling armchair and zigzag edges in oxidative cutting of graphene. Journal of Materials Chemistry C, 2016, 4, 6539-6545.	2.7	8
242	Lancing Drug Reservoirs into Subcutaneous Fat to Combat Obesity and Associated Metabolic Diseases. Small, 2020, 16, 2002872.	5.2	8
243	Schiff base tetranuclear Zn ₂ Ln ₂ single-molecule magnets bridged by hydroxamic acid in association with near-infrared luminescence. Dalton Transactions, 2022, 51, 6918-6926.	1.6	8
244	Double‧helled Nanostructure of SnO 2 @C Tubeâ€in‧nO 2 @C Tube Boosts Lithiumâ€ion Storage. Energy Technology, 2019, 7, 1801048.	1.8	6
245	On-chip diameter-dependent conversion of metallic to semiconducting single-walled carbon nanotubes by immersion in 2-ethylanthraquinone. RSC Advances, 2012, 2, 1275-1281.	1.7	5
246	Tumor microenvironment-activated theranostic nanoreactor for NIR-II Photoacoustic imaging-guided tumor-specific photothermal therapy. Fundamental Research, 2024, 4, 178-187.	1.6	5
247	Fabrication and Characterization of Networked Graphene Devices Based on Ultralarge Single-Layer Graphene Sheets. IEEE Nanotechnology Magazine, 2011, 10, 467-471.	1.1	4
248	A Novel Electroactive Polymer for pHâ€independent Oxygen Sensing. Electroanalysis, 2015, 27, 2745-2752.	1.5	3
249	Metal nanodots anchored on carbon nanotubes prepared by a facile solid-state redox strategy for superior lithium storage. Functional Materials Letters, 2020, 13, 2051039.	0.7	3
250	The synergistic effect supported Li 4 Ti 5 O 12 anode with advanced lithium storage performance. Materials Chemistry and Physics, 2017, 201, 362-371.	2.0	2
251	Engineering edge-exposed MoS2 nanoflakes anchored on the 3D cross-linked carbon frameworks for enhanced lithium storage. Functional Materials Letters, 2020, 13, 2051050.	0.7	1
252	A novel microfabricated device measures a large fraction of hormone release from individual-cells		0

with high time resolution., 0,,.

#	Article	IF	CITATIONS
253	Nanopore Devices for Single Molecule Sensing. , 0, , .		0
254	Facile Synthesis of TiO ₂ Microspheres with Super High Rate Performance. Advanced Materials Research, 0, 573-574, 1198-1202.	0.3	0
255	Macromol. Rapid Commun. 23/2016. Macromolecular Rapid Communications, 2016, 37, 1980-1980.	2.0	Ο