Leena Nebhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8966803/publications.pdf Version: 2024-02-01

LEENA NERHANI

#	Article	IF	CITATIONS
1	Silica derived from variety of sources and its functionalized forms as an antiblock additive in polypropylene. Journal of Thermoplastic Composite Materials, 2023, 36, 1382-1400.	2.6	2
2	Silica Reinforced Polymer Composites: Properties, Characterization and Applications. , 2022, , 1057-1074.		1
3	Crystallization kinetics of compatibilized blends of polypropylene and polyethylenimine. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6689-6699.	2.0	4
4	Light-regulated growth of polymer chains from the surface of RAFT agent primed mesoporous silica nanoparticles. Surfaces and Interfaces, 2022, 29, 101764.	1.5	8
5	Polybenzoxazine - an enticing precursor for engineering heteroatom-doped porous carbon materials with applications beyond energy, environment and catalysis. Materials Today Chemistry, 2022, 23, 100734.	1.7	7
6	Improved melt strength and processability of impact copolymer polypropylene by introducing longâ€chain branching via reactive extrusion with "ene―functionalized dendrimer. Polymer Engineering and Science, 2022, 62, 1876-1889.	1.5	3
7	Hybrid mesoporous silica-based nanocarriers for responsive drug release in cancerous cell line. Applied Nanoscience (Switzerland), 2021, 11, 217-228.	1.6	3
8	Bactericidal materials prepared via conjugation of responsive polymers to cysteine. Materials Today Communications, 2021, 26, 101813.	0.9	2
9	TEMPO driven thiol–ene reaction for the preparation of polymer functionalized silicon wafers. New Journal of Chemistry, 2021, 45, 9118-9129.	1.4	3
10	High Performance Hybrid Materials Based on Polybenzoxazines. , 2021, , .		0
11	Expanding the library of nitrogen enriched polybenzoxazine thermosets prepared from side-chain type benzoxazines functionalized with polyethylenimine. European Polymer Journal, 2021, 155, 110542.	2.6	8
12	Combined Effect of Functionality and Pore Size on Dehydrogenation of Ammonia Borane via Its Nanoconfinement in Polyacrylamide-Grafted Organically Modified Mesoporous Silica. ACS Applied Energy Materials, 2021, 4, 6585-6598.	2.5	4
13	Tuning Melt Strength and Processability of Polyolefins by Addition of a Functionalized Additive Designed via the TEMPO-Driven Thiol-ene Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 10155-10166.	1.8	10
14	Antimicrobial and Responsive Zwitterionic Polymer Based on Cysteine Methacrylate Synthesized via RAFT Polymerization. Polymer Science - Series A, 2021, 63, 505-514.	0.4	3
15	Concerted effect of boron and porosity on shear thickening behavior of hybrid mesoporous silica dispersions. Materials Today Chemistry, 2021, 22, 100565.	1.7	2
16	Phloretic acid: a smart choice to develop low-temperature polymerizable bio-based benzoxazine thermosets. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1233-1242.	2.0	23
17	Tuning shear thickening behavior via synthesis of organically modified silica to improve impact resistance of Kevlar fabric. Materials Today Communications, 2020, 23, 100892.	0.9	17
18	Imprinting the location of an in-built RAFT agent and selective grafting of polymer chains inside or outside the pores of mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2020, 294, 109898.	2.2	11

#	Article	IF	CITATIONS
19	Computational and experimental approach to evaluate the effect of initiator concentration, solvents, and enes on the TEMPO driven thiol–ene reaction. New Journal of Chemistry, 2020, 44, 18625-18632.	1.4	6
20	Chemical analysis of polymers. , 2020, , 69-116.		1
21	Tuning the architecture and performance of multifarious benzoxazine resin based on guaiacol and polyethylenimine. European Polymer Journal, 2020, 134, 109848.	2.6	11
22	Integration of silica with benzoxazine to improve particle dispersion and thermal performance of composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124515.	2.3	10
23	Hybrid polymers based on bio-based benzoxazines with inorganic siloxane linkage to confer impressive thermal performance. Polymer, 2020, 199, 122549.	1.8	33
24	Comprehensive studies on polyethylenimine filled polypropylene and its potential application in carbon dioxide sequestration. Polymer Engineering and Science, 2019, 59, 2092-2102.	1.5	6
25	Sustainable approach towards enhancing thermal stability of bio-based polybenzoxazines. Polymer, 2019, 184, 121905.	1.8	30
26	Well defined and responsive amphiphilic block copolymers synthesized using TEMPO initiated thiol-ene reaction. Materials Today Communications, 2019, 21, 100637.	0.9	7
27	Priming the pores of mesoporous silica nanoparticles with an in-built RAFT agent for anchoring a thermally responsive polymer. Microporous and Mesoporous Materials, 2019, 277, 60-69.	2.2	22
28	Highly Bactericidal Macroporous Antimicrobial Polymeric Gel for Point-of-Use Water Disinfection. Scientific Reports, 2018, 8, 7965.	1.6	18
29	TEMPO Driven Mild and Modular Route to Functionalized Microparticles. Macromolecular Rapid Communications, 2018, 39, e1800169.	2.0	15
30	pH- and Metal Ion- Sensitive Hydrogels based on N-[2-(dimethylaminoethyl)acrylamide]. Polymers, 2016, 8, 233.	2.0	22
31	Quantification of Grafting Densities Achieved via Modular "Graftingâ€ŧo―Approaches onto Divinylbenzene Microspheres. Advanced Functional Materials, 2010, 20, 2010-2020.	7.8	46
32	Functionalization of Fullerenes with Cyclopentadienyl and Anthracenyl Capped Polymeric Building Blocks via Diels–Alder Chemistry. Macromolecular Rapid Communications, 2010, 31, 1298-1305.	2.0	35
33	Accessing Quantitative Degrees of Functionalization on Solid Substrates via Solid-State NMR Spectroscopy. Macromolecules, 2010, 43, 3868-3875.	2.2	33
34	Rapid Bonding/Debonding on Demand: Reversibly Cross-Linked Functional Polymers via Dielsâ~'Alder Chemistry. Macromolecules, 2010, 43, 5515-5520.	2.2	134
35	Orthogonal Transformations on Solid Substrates: Efficient Avenues to Surface Modification. Advanced Materials, 2009, 21, 3442-3468.	11.1	138
36	Strongly electron deficient sulfonyldithioformate based RAFT agents for hetero Dielsâ€Alder conjugation: Computational design and experimental evaluation. Journal of Polymer Science Part A, 2009, 47, 6053-6071.	2.5	48

LEENA NEBHANI

Leena Nebhani

#	Article	IF	CITATIONS
37	Efficient and mild modification of Si surfaces via orthogonal hetero Dielsâ€Alder chemistry. Journal of Polymer Science Part A, 2009, 47, 7090-7095.	2.5	41
38	Surface Modification of Poly(divinylbenzene) Microspheres via Thiolâ^'Ene Chemistry and Alkyneâ^'Azide Click Reactions. Macromolecules, 2009, 42, 3707-3714.	2.2	192
39	Efficient Surface Modification of Divinylbenzene Microspheres via a Combination of RAFT and Hetero Dielsâ€Alder Chemistry. Macromolecular Rapid Communications, 2008, 29, 1431-1437.	2.0	93
40	Macromol. Rapid Commun. 17/2008. Macromolecular Rapid Communications, 2008, 29, NA-NA.	2.0	0
41	Polymer Functionalization of Mesoporous Silica Nanoparticles Using Controlled Radical Polymerization Techniques. , 0, , .		4