Sergi Sabater

List of Publications by Citations

Source: https://exaly.com/author-pdf/8966774/sergi-sabater-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 12,362 91 313 h-index g-index citations papers 6.45 320 13,942 5.4 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
313	Recommendations for the routine sampling of diatoms for water quality assessments in Europe. <i>Journal of Applied Phycology</i> , 1998 , 10, 215-224	3.2	286
312	Monitoring the effect of chemicals on biological communities. The biofilm as an interface. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 387, 1425-34	4.4	268
311	Conservation. Why should we care about temporary waterways?. <i>Science</i> , 2014 , 343, 1080-1	33.3	216
310	Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. <i>Journal of the North American Benthological Society</i> , 2005 , 24, 919-933		210
309	Nitrogen Removal by Riparian Buffers along a European Climatic Gradient: Patterns and Factors of Variation. <i>Ecosystems</i> , 2003 , 6, 0020-0030	3.9	180
308	Protecting and restoring Europeß waters: An analysis of the future development needs of the Water Framework Directive. <i>Science of the Total Environment</i> , 2019 , 658, 1228-1238	10.2	176
307	Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. <i>Science of the Total Environment</i> , 2016 , 540, 63-70	10.2	156
306	Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat River basin (northeast Spain). <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2706-14	3.8	155
305	Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. <i>Freshwater Biology</i> , 2004 , 49, 960-971	3.1	146
304	Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. <i>Science of the Total Environment</i> , 2017 , 577, 1-18	10.2	140
303	Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. <i>Aquatic Toxicology</i> , 2010 , 100, 346-53	5.1	134
302	Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. <i>Journal of Hydrology</i> , 2010 , 383, 52-61	6	130
301	Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project. <i>Science of the Total Environment</i> , 2015 , 503-504, 3-9	10.2	128
300	Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. <i>Science of the Total Environment</i> , 2014 , 470-471, 567-77	10.2	124
299	Biofilm structure and function and possible implications for riverine DOC dynamics. <i>Microbial Ecology</i> , 2004 , 47, 316-28	4.4	118
298	Balancing the health benefits and environmental risks of pharmaceuticals: Diclofenac as an example. <i>Environment International</i> , 2015 , 85, 327-33	12.9	115
297	Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. <i>Ecological Indicators</i> , 2014 , 37, 199-209	5.8	112

(2015-2000)

296	Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. <i>Journal of the North American Benthological Society</i> , 2000 , 19, 609-620		111
295	Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. <i>Water Research</i> , 1999 , 33, 1989-1996	12.5	111
294	Assessing the impact of multiple stressors on aquatic biota: the receptor side matters. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 7690-6	10.3	110
293	Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. <i>Chemosphere</i> , 2009 , 76, 1392-401	8.4	110
292	The effects of land use changes on streams and rivers in mediterranean climates. <i>Hydrobiologia</i> , 2013 , 719, 383-425	2.4	108
291	Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. <i>Environmental Pollution</i> , 2016 , 210, 121-8	9.3	106
290	The effect of biological factors on the efficiency of river biofilms in improving water quality. <i>Hydrobiologia</i> , 2002 , 469, 149-156	2.4	105
289	Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. <i>Science of the Total Environment</i> , 2016 , 540, 241-9	10.2	104
288	Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. <i>Science of the Total Environment</i> , 2018 , 619-620, 328-337	10.2	103
287	Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. <i>Water Research</i> , 2005 , 39, 73-82	12.5	102
286	Response of community structure to sustained drought in Mediterranean rivers. <i>Journal of Hydrology</i> , 2010 , 383, 135-146	6	101
285	Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. <i>Hydrobiologia</i> , 2013 , 712, 129-143	2.4	96
284	COMMUNITY DYNAMICS AND METABOLISM OF BENTHIC ALGAE COLONIZING WOOD AND ROCK SUBSTRATA IN A FOREST STREAM. <i>Journal of Phycology</i> , 1998 , 34, 561-567	3	95
283	Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. <i>Science of the Total Environment</i> , 2016 , 540, 250-9	10.2	94
282	Relevance of polymeric matrix enzymes during biofilm formation. <i>Microbial Ecology</i> , 2008 , 56, 427-36	4.4	94
281	Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill 2000 , 12, 113-124		90
280	Translocation of microbenthic algal assemblages used for In situ analysis of metal pollution in rivers. <i>Archives of Environmental Contamination and Toxicology</i> , 1999 , 37, 19-28	3.2	89
279	Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant. <i>Journal of Hazardous Materials</i> , 2015 , 282, 165-73	12.8	87

278	Trace metal concentration and fish size: variation among fish species in a Mediterranean river. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 107, 154-61	7	87
277	Influences of the stream groundwater hydrology on nitrate concentration in unsaturated riparian area bounded by an intermittent Mediterranean stream. <i>Water Resources Research</i> , 2003 , 39,	5.4	87
276	Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river. <i>Environmental Pollution</i> , 2013 , 178, 220-8	9.3	84
275	Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers. <i>Science of the Total Environment</i> , 2015 , 503-504, 133-41	10.2	83
274	Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). <i>Science of the Total Environment</i> , 2008 , 404, 196-206	10.2	83
273	Functional responses of stream biofilms to flow cessation, desiccation and rewetting. <i>Freshwater Biology</i> , 2012 , 57, 1565-1578	3.1	82
272	Combined scenarios of chemical and ecological quality under water scarcity in Mediterranean rivers. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 1269-1278	14.6	82
271	LIGHT HISTORY INFLUENCES THE SENSITIVITY TO ATRAZINE IN PERIPHYTIC ALGAE. <i>Journal of Phycology</i> , 1998 , 34, 233-241	3	82
270	Contrasting effects of organic and inorganic toxicants on freshwater periphyton. <i>Aquatic Toxicology</i> , 2003 , 64, 165-75	5.1	82
269	Multifunctionality and diversity in bacterial biofilms. <i>PLoS ONE</i> , 2011 , 6, e23225	3.7	80
268	Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. <i>Aquatic Sciences</i> , 2011 , 73, 485-497	2.5	78
267	Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. <i>Science of the Total Environment</i> , 2017 , 590-591, 484-494	10.2	77
266	STRUCTURE AND FUNCTION OF BENTHIC ALGAL COMMUNITIES IN AN EXTREMELY ACID RIVER1. Journal of Phycology, 2003 , 39, 481-489	3	77
265	Effects of large river dam regulation on bacterioplankton community structure. <i>FEMS Microbiology Ecology</i> , 2013 , 84, 316-31	4.3	76
264	Mixed effects of effluents from a wastewater treatment plant on river ecosystem metabolism: subsidy or stress?. <i>Freshwater Biology</i> , 2015 , 60, 1398-1410	3.1	76
263	Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. <i>Journal of the North American Benthological Society</i> , 2007 , 26, 54-69		75
262	Influence of algal biomass on extracellular enzyme activity in river biofilms. <i>Microbial Ecology</i> , 2000 , 40, 16-24	4.4	75
261	Alterations of the Global Water Cycle and their Effects on River Structure, Function and Services. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2008, 1, 75-88		74

(1995-2016)

260	Runoff Trends Driven by Climate and Afforestation in a Pyrenean Basin. <i>Land Degradation and Development</i> , 2016 , 27, 823-838	4.4	74	
259	Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. <i>Science of the Total Environment</i> , 2016 , 540, 144-57	10.2	71	
258	Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors. <i>Science of the Total Environment</i> , 2014 , 468-469, 715-23	10.2	71	
257	Effect of primary producers on the heterotrophic metabolism of a stream biofilm. <i>Freshwater Biology</i> , 1999 , 41, 729-736	3.1	71	
256	Effects of human-driven water stress on river ecosystems: a meta-analysis. <i>Scientific Reports</i> , 2018 , 8, 11462	4.9	70	
255	Recent perspectives on temporary river ecology. <i>Aquatic Sciences</i> , 2011 , 73, 453-457	2.5	70	
254	STRUCTURE AND ACTIVITY OF ROCK AND SAND BIOFILMS IN A MEDITERRANEAN STREAM. <i>Ecology</i> , 2001 , 82, 3232-3245	4.6	68	
253	Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. <i>Chemosphere</i> , 2013 , 92, 1126-35	8.4	67	
252	Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron. <i>Science of the Total Environment</i> , 2011 , 409, 3129-37	10.2	67	
251	Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. <i>Journal of Applied Phycology</i> , 1998 , 10, 203-213	3.2	67	
250	River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors. <i>Science of the Total Environment</i> , 2017 , 596-597, 465-480	10.2	66	
249	Least Disturbed Condition for European Mediterranean rivers. <i>Science of the Total Environment</i> , 2014 , 476-477, 745-56	10.2	66	
248	Organic matter availability during pre- and post-drought periods in a Mediterranean stream. <i>Hydrobiologia</i> , 2010 , 657, 217-232	2.4	66	
247	The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. <i>Limnology and Oceanography</i> , 2004 , 49, 1713-1721	4.8	66	
246	Determination of the biological diatom index (IBD NF T 90B54): results of an intercomparison exercise. <i>Journal of Applied Phycology</i> , 2002 , 14, 27-39	3.2	66	
245	Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem. <i>Water Research</i> , 2016 , 100, 126-136	12.5	66	
244	Microbial biofilm structure and organic matter use in mediterranean streams. <i>Hydrobiologia</i> , 2013 , 719, 43-58	2.4	64	
243	SEASONAL VARIATIONS IN PHOTOSYNTHESIS-IRRADIANCE RESPONSES BY BIOFILMS IN MEDITERRANEAN STREAMS. <i>Journal of Phycology</i> , 1995 , 31, 727-735	3	63	

242	Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates. <i>Talanta</i> , 2015 , 132, 373-81	6.2	62
241	Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity. <i>Aquatic Toxicology</i> , 2010 , 96, 225-33	5.1	61
240	Phosphate limitation influences the sensitivity to copper in periphytic algae. <i>Freshwater Biology</i> , 2004 , 49, 463-473	3.1	60
239	Availability of glucose and light modulates the structure and function of a microbial biofilm. <i>FEMS Microbiology Ecology</i> , 2009 , 69, 27-42	4.3	59
238	Effects of atrazine on periphyton under grazing pressure. <i>Aquatic Toxicology</i> , 2001 , 55, 239-49	5.1	59
237	Stream Biofilm Responses to Flow Intermittency: From Cells to Ecosystems. <i>Frontiers in Environmental Science</i> , 2016 , 4,	4.8	59
236	A tale of pipes and reactors: Controls on the in-stream dynamics of dissolved organic matter in rivers. <i>Limnology and Oceanography</i> , 2017 , 62, S85-S94	4.8	58
235	Pollution-induced community tolerance to non-steroidal anti-inflammatory drugs (NSAIDs) in fluvial biofilm communities affected by WWTP effluents. <i>Chemosphere</i> , 2014 , 112, 185-93	8.4	57
234	Interaction between local hydrodynamics and algal community in epilithic biofilm. <i>Water Research</i> , 2013 , 47, 2153-63	12.5	57
233	BENTHIC MICROALGAL COLONIZATION IN STREAMS OF DIFFERING RIPARIAN COVER AND LIGHT AVAILABILITY1. <i>Journal of Phycology</i> , 2004 , 40, 1004-1012	3	57
232	EFFECT OF COPPER ON ALGAL COMMUNITIES FROM OLIGOTROPHIC CALCAREOUS STREAMS1. Journal of Phycology, 2002 , 38, 241-248	3	57
231	Ecological and biogeographical aspects of diatom distribution in Pyrenean springs. <i>British Phycological Journal</i> , 1992 , 27, 203-213		57
230	Water quality assessment of rivers using diatom metrics across Mediterranean Europe: a methods intercalibration exercise. <i>Science of the Total Environment</i> , 2014 , 476-477, 768-76	10.2	56
229	Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms. <i>Science of the Total Environment</i> , 2015 , 503-504, 159-70	10.2	55
228	Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. <i>Freshwater Biology</i> , 1995 , 33, 373-383	3.1	55
227	When Water Vanishes: Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams. <i>Ecosystems</i> , 2016 , 19, 710-723	3.9	54
226	Ecological implications of mass growth of benthic cyanobacteria in rivers. <i>Aquatic Microbial Ecology</i> , 2003 , 32, 175-184	1.1	53
225	The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream. Hydrology and Earth System Sciences, 2002, 6, 515-526	5.5	52

Comparing fish assemblages and trophic ecology of permanent and intermittent reaches in a Mediterranean stream. <i>Hydrobiologia</i> , 2010 , 657, 167-180	2.4	51
Changes in atrazine toxicity throughout succession of stream periphyton communities. <i>Journal of Applied Phycology</i> , 1997 , 9, 137-146	3.2	51
Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. <i>Freshwater Biology</i> , 2014 , 59, 1816-1829	3.1	49
Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. <i>Annales De Limnologie</i> , 2007 , 43, 1-11	0.7	49
Effect of climate on the trophic structure of temperate forested streams. a comparison of Mediterranean and Atlantic streams. <i>Science of the Total Environment</i> , 2008 , 390, 475-84	10.2	48
Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. <i>Environmental Pollution</i> , 2016 , 210, 303-14	9.3	47
Consistency in Diatom Response to Metal-Contaminated Environments. <i>Handbook of Environmental Chemistry</i> , 2012 , 117-146	0.8	47
Organic matter availability structures microbial biomass and activity in a Mediterranean stream. <i>Freshwater Biology</i> , 2009 , 54, 2025-2036	3.1	47
Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. <i>Archives of Environmental Contamination and Toxicology</i> , 2003 , 44, 17-29	3.2	46
The effect of copper exposure on a simple aquatic food chain. <i>Aquatic Toxicology</i> , 2003 , 63, 283-91	5.1	46
Some factors affecting distribution of diatom assemblages in Pyrenean springs. <i>Freshwater Biology</i> , 1990 , 24, 493-507	3.1	46
Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. <i>Water Research</i> , 1998 , 32, 1067-1074	12.5	45
Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intl1) and sul1 genes within stable streambed bacterial communities. <i>Water Research</i> , 2018 , 138, 77-85	12.5	44
ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1). <i>Journal of Phycology</i> , 2008 , 44, 564-72	3	44
Responses of biofilms to combined nutrient and metal exposure. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 626-632	3.8	44
Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian basins. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 918-33	5.1	43
Comparing the response of biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil spillage in a Mediterranean river (NE Catalunya, Spain). <i>Chemosphere</i> , 2007 , 66, 1206-16	8.4	43
Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature. <i>Microbial Ecology</i> , 2012 , 64, 593-604	4.4	42
	Changes in atrazine toxicity throughout succession of stream periphyton communities. <i>Journal of Applied Phycology</i> , 1997, 9, 137-146 Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. <i>Freshwater Biology</i> , 2014, 59, 1816-1829 Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. <i>Annales De Limnologie</i> , 2007, 43, 1-11 Effect of climate on the trophic structure of temperate forested streams. a comparison of Mediterranean and Atlantic streams. <i>Science of the Total Environment</i> , 2008, 390, 475-84 Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. <i>Environmental Pollution</i> , 2016, 210, 303-14 Consistency in Diatom Response to Metal-Contaminated Environments. <i>Handbook of Environmental Chemistry</i> , 2012, 117-146 Organic matter availability structures microbial biomass and activity in a Mediterranean stream. <i>Freshwater Biology</i> , 2009, 54, 2025-2036 Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymiline, in periphyton communities sampled from 15 European river stretches. <i>Archives of Environmental Contamination and Toxicology</i> , 2003, 44, 17-29 The effect of copper exposure on a simple aquatic food chain. <i>Aquatic Toxicology</i> , 2003, 63, 283-91 Some factors affecting distribution of diatom assemblages in Pyrenean springs. <i>Freshwater Biology</i> , 1990, 24, 493-507 Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. <i>Water Research</i> , 1998, 32, 1067-1074 Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intl1) and sul1 genes within stable streambed bacterial communities. <i>Water Research</i> , 2018, 138, 77-85 ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1). <i>Journal of Phycology</i> , 2008, 44, 564-72 Responses of biofilms to combined nutrient and metal exposure. <i>Environmental Toxicology and Chemistry</i> , 2002, 21, 626-632 Assessing and for	Changes in atrazine toxicity throughout succession of stream periphyton communities. Journal of Applied Phycology, 1997, 9, 137-146 Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshwater Biology, 2014, 59, 1816-1829 3.1 Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales De Limnologie, 2007, 43, 1-11 Effect of climate on the trophic structure of temperate forested streams. a comparison of Mediterranean and Atlantic streams. Science of the Total Environment, 2008, 390, 475-84 10.2 Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. Environmental Pollution, 2016, 210, 303-14 Consistency in Diatom Response to Metal-Contaminated Environments. Handbook of Environmental Chemistry, 2012, 117-146 Organic matter availability structures microbial biomass and activity in a Mediterranean stream. Freshwater Biology, 2009, 54, 2025-2036 Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Archives of Environmental Contamination and Toxicology, 2003, 44, 17-29 The effect of copper exposure on a simple aquatic food chain. Aquatic Toxicology, 2003, 63, 283-91 5.1 Some factors affecting distribution of diatom assemblages in Pyrenean springs. Freshwater Biology, 1990, 24, 493-507 Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. Water Research, 1998, 32, 1067-1074 Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intl.) and sul1 genes within stable streambed bacterial communities. Water Research, 2018, 138, 77-85 ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1). Journal of Phycology, 2008, 44, 564-72 Responses of biofilms to combined nutrient and metal exposure. Environmental Toxicology and Chemistry, 2002, 21, 626-632 Assessing and forecasting the

206	Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. <i>Aquatic Botany</i> , 2008 , 88, 32-38	1.8	42
205	Are pharmaceuticals more harmful than other pollutants to aquatic invertebrate species: a hypothesis tested using multi-biomarker and multi-species responses in field collected and transplanted organisms. <i>Chemosphere</i> , 2011 , 85, 1548-54	8.4	41
204	Use of microbenthic algal communities in ecotoxicological tests for the assessment of water quality: the Ter river case study. <i>Journal of Applied Phycology</i> , 2002 , 14, 41-48	3.2	41
203	Ecology and morphological variability of Aulacoseira granulata (Bacillariophyceae) in Spanish reservoirs. <i>Journal of Plankton Research</i> , 1995 , 17, 1-16	2.2	41
202	Significant ecological impact on the progression of fluoroquinolone resistance in Escherichia coli with increased community use of moxifloxacin, levofloxacin and amoxicillin/clavulanic acid. <i>Journal of Antimicrobial Chemotherapy</i> , 2011 , 66, 664-9	5.1	40
201	Successional dynamics of the phytoplankton in the lower part of the river Ebro. <i>Journal of Plankton Research</i> , 1990 , 12, 573-592	2.2	40
200	Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. <i>Environmental Research</i> , 2017 , 156, 485-493	7.9	39
199	The Iberian Rivers 2009 , 113-149		39
198	The relevance of the community approach linking chemical and biological analyses in pollution assessment. <i>TrAC - Trends in Analytical Chemistry</i> , 2009 , 28, 619-626	14.6	39
197	Assessing the ecological effects of water stress and pollution in a temporary river - Implications for water management. <i>Science of the Total Environment</i> , 2018 , 618, 1591-1604	10.2	38
196	Long-term moderate nutrient inputs enhance autotrophy in a forested Mediterranean stream. <i>Freshwater Biology</i> , 2011 , 56, 1266-1280	3.1	38
195	Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. <i>Biogeochemistry</i> , 2015 , 123, 429-446	3.8	37
194	Variable discharge alters habitat suitability for benthic algae and cyanobacteria in a forested Mediterranean stream. <i>Marine and Freshwater Research</i> , 2010 , 61, 441	2.2	37
193	Understanding effects of global change on river ecosystems: science to support policy in a changing world. <i>Hydrobiologia</i> , 2010 , 657, 3-18	2.4	37
192	Examining the Demand for Ecosystem Services: The Value of Stream Restoration for Drinking Water Treatment Managers in the Llobregat River, Spain. <i>Ecological Economics</i> , 2013 , 90, 196-205	5.6	36
191	Nutrients versus emerging contaminants-Or a dynamic match between subsidy and stress effects on stream biofilms. <i>Environmental Pollution</i> , 2016 , 212, 208-215	9.3	35
190	Wastewater pollution differently affects the antibiotic resistance gene pool and biofilm bacterial communities across streambed compartments. <i>Molecular Ecology</i> , 2017 , 26, 5567-5581	5.7	35
189	Increasing extent of periods of no flow in intermittent waterways promotes heterotrophy. <i>Freshwater Biology</i> , 2015 , 60, 1810-1823	3.1	35

(2019-2009)

188	Is chemical contamination linked to the diversity of biological communities in rivers?. <i>TrAC - Trends in Analytical Chemistry</i> , 2009 , 28, 592-602	14.6	34	
187	Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream. <i>Hydrobiologia</i> , 1996 , 335, 107-113	2.4	34	
186	Heterotrophic metabolism in a forest stream sediment: surface versus subsurface zones. <i>Aquatic Microbial Ecology</i> , 1998 , 16, 143-151	1.1	34	
185	Multiple-stressor effects on river biofilms under different hydrological conditions. <i>Freshwater Biology</i> , 2016 , 61, 2102-2115	3.1	34	
184	Integrating ecosystem services in river basin management plans. <i>Journal of Applied Ecology</i> , 2016 , 53, 865-875	5.8	34	
183	The nematode community in cyanobacterial biofilms in the river Llobregat, Spain. <i>Nematology</i> , 2006 , 8, 909-919	0.9	33	
182	Effects of nutrient inputs in a forested Mediterranean stream under moderate light availability. <i>Archiv Fil Hydrobiologie</i> , 2005 , 163, 479-496		33	
181	Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream fig: 3. Fundamental and Applied Limnology, 1997 , 140, 261-271	1.9	33	
180	Epilithic diatom assemblages and their relationship to environmental characteristics in an agricultural watershed (Guadiana River, SW Spain). <i>Ecological Indicators</i> , 2009 , 9, 693-703	5.8	32	
179	Does grazing pressure modify diuron toxicity in a biofilm community?. <i>Archives of Environmental Contamination and Toxicology</i> , 2010 , 58, 955-62	3.2	32	
178	Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. <i>Aquatic Sciences</i> , 1999 , 61, 122	2.5	32	
177	What do we still need to know about the ecohydrology of riparian zones?. <i>Ecohydrology</i> , 2010 , 3, 373-3	77 .5	31	
176	Dam regulation and riverine food-web structure in a Mediterranean river. <i>Science of the Total Environment</i> , 2018 , 625, 301-310	10.2	30	
175	Influence of phosphate on the response of periphyton to atrazine exposure. <i>Archives of Environmental Contamination and Toxicology</i> , 2007 , 52, 32-7	3.2	30	
174	Differential effects of nutrients and light on the primary production of stream algae and mosses. <i>Fundamental and Applied Limnology</i> , 2007 , 170, 1-10	1.9	30	
173	Multiple stressor effects on biodiversity and ecosystem functioning in a Mediterranean temporary river. <i>Science of the Total Environment</i> , 2019 , 647, 1179-1187	10.2	29	
172	Organic matter characteristics in a Mediterranean stream through amino acid composition: changes driven by intermittency. <i>Aquatic Sciences</i> , 2011 , 73, 523-535	2.5	29	
171	Contamination patterns and attenuation of pharmaceuticals in a temporary Mediterranean river. <i>Science of the Total Environment</i> , 2019 , 647, 561-569	10.2	28	

170	Drought episode modulates the response of river biofilms to triclosan. <i>Aquatic Toxicology</i> , 2013 , 127, 36-45	5.1	28
169	Linking in-stream nutrient flux to land use and inter-annual hydrological variability at the watershed scale. <i>Science of the Total Environment</i> , 2012 , 440, 72-81	10.2	28
168	Distribution patterns of benthic diatoms in a Pampean river exposed to seasonal floods: the Cuarto River (Argentina). <i>Biodiversity and Conservation</i> , 2003 , 12, 2443-2454	3.4	28
167	Wood and leaf debris input in a Mediterranean stream: The influence of riparian vegetation. Fundamental and Applied Limnology, 2001 , 153, 91-102	1.9	28
166	Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method. <i>Science Advances</i> , 2016 , 2, e1601272	14.3	27
165	Drought-induced discontinuities in the source and degradation of dissolved organic matter in a Mediterranean river. <i>Biogeochemistry</i> , 2016 , 127, 125-139	3.8	27
164	Hydrological variation modulates pharmaceutical levels and biofilm responses in a Mediterranean river. <i>Science of the Total Environment</i> , 2014 , 472, 1052-61	10.2	27
163	Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. <i>Fundamental and Applied Limnology</i> , 2009 , 173, 255-264	1.9	27
162	Algal biomass in a disturbed Atlantic river: water quality relationships and environmental implications. <i>Science of the Total Environment</i> , 2000 , 263, 185-95	10.2	27
161	Impact of urban chemical pollution on water quality in small, rural and effluent-dominated Mediterranean streams and rivers. <i>Science of the Total Environment</i> , 2018 , 613-614, 763-772	10.2	26
160	Colonisation of Introduced Timber by Algae and Invertebrates, and its Potential Role in Aquatic Ecosystem Restoration. <i>Hydrobiologia</i> , 2006 , 556, 303-316	2.4	26
159	Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics. <i>Journal of Environmental Quality</i> , 2003 , 32, 191-7	3.4	26
158	Effects of copper on algal communities at different current velocities. <i>Journal of Applied Phycology</i> , 2002 , 14, 391-398	3.2	26
157	An assessment of recent trophic changes in Windermere South Basin (England) based on diatom remains and fossil pigments. <i>Journal of Paleolimnology</i> , 1995 , 14, 151-163	2.1	26
156	Hydrological characterization of dammed rivers in the NW Mediterranean region. <i>Hydrological Processes</i> , 2016 , 30, 1691-1707	3.3	25
155	The dynamics of biofilm bacterial communities is driven by flow wax and wane in a temporary stream. <i>Limnology and Oceanography</i> , 2014 , 59, 2057-2067	4.8	25
154	Regulation causes nitrogen cycling discontinuities in Mediterranean rivers. <i>Science of the Total Environment</i> , 2016 , 540, 168-77	10.2	24
153	Biofilm functional responses to the rehydration of a dry intermittent stream. <i>Hydrobiologia</i> , 2014 , 727, 185-195	2.4	24

152	The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees). <i>Geomorphology</i> , 2017 , 293, 211-226	4.3	23	
151	Modelling epilithic biofilms combining hydrodynamics, invertebrate grazing and algal traits. <i>Freshwater Biology</i> , 2014 , 59, 1213-1228	3.1	23	
150	Reservoirs override seasonal variability of phytoplankton communities in a regulated Mediterranean river. <i>Science of the Total Environment</i> , 2014 , 475, 225-33	10.2	23	•
149	Effects of Hydrologic Alterations on the Ecological Quality of River Ecosystems. <i>Handbook of Environmental Chemistry</i> , 2009 , 15-39	0.8	23	
148	Water quality and diatom communities in two catalan rivers (N.E. Spain). Water Research, 1987 , 21, 901	-9:1/21 5	23	
147	Protecting U.S. temporary waterways. <i>Science</i> , 2018 , 361, 856-857	33.3	23	
146	Diatom responses to sewage inputs and hydrological alteration in Mediterranean streams. <i>Environmental Pollution</i> , 2018 , 238, 369-378	9.3	22	
145	Contribution of epilithic diatoms to benthic-pelagic coupling in a temperate river. <i>Aquatic Microbial Ecology</i> , 2013 , 69, 47-57	1.1	22	
144	Fungal and Bacterial Colonization of Submerged Leaf Litter in a Mediterranean Stream. <i>International Review of Hydrobiology</i> , 2011 , 96, 221-234	2.3	22	
143	Contribution of microbial and invertebrate communities to leaf litter colonization in a Mediterranean stream. <i>Journal of the North American Benthological Society</i> , 2009 , 28, 34-43		22	
142	Photosynthetic pigment changes and adaptations in biofilms in response to flow intermittency. <i>Aquatic Sciences</i> , 2014 , 76, 565-578	2.5	21	
141	Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. <i>Hydrobiologia</i> , 2012 , 695, 281-291	2.4	21	
140	Patterns of biofilm formation in two streams from different bioclimatic regions: analysis of microbial community structure and metabolism. <i>Hydrobiologia</i> , 2012 , 695, 83-96	2.4	21	
139	The role of drought in the impact of climatic change on the microbiota of peatland streams. <i>Freshwater Biology</i> , 1994 , 32, 223-230	3.1	21	
138	Desiccation events change the microbial response to gradients of wastewater effluent pollution. <i>Water Research</i> , 2019 , 151, 371-380	12.5	21	
137	Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe. <i>Science of the Total Environment</i> , 2019 , 651, 895-908	10.2	21	
136	Biofilm Responses to Flow Regulation by Dams in Mediterranean Rivers. <i>River Research and Applications</i> , 2015 , 31, 1003-1016	2.3	20	
135	Transport of sediment borne contaminants in a Mediterranean river during a high flow event. <i>Science of the Total Environment</i> , 2018 , 633, 1392-1402	10.2	20	

134	Multistressor effects on river biofilms under global change conditions. <i>Science of the Total Environment</i> , 2018 , 627, 1-10	10.2	20
133	Flow regulation increases food-chain length through omnivory mechanisms in a Mediterranean river network. <i>Freshwater Biology</i> , 2016 , 61, 1536-1549	3.1	20
132	Effects of Duration, Frequency, and Severity of the Non-flow Period on Stream Biofilm Metabolism. <i>Ecosystems</i> , 2019 , 22, 1393-1405	3.9	19
131	Phosphorus use by planktonic communities in a large regulated Mediterranean river. <i>Science of the Total Environment</i> , 2012 , 426, 180-7	10.2	19
130	Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes. <i>Environmental Research Letters</i> , 2013 , 8, 014002	6.2	19
129	Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network?. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2013 , 118, 728-740	3.7	19
128	Effects of removal of riparian vegetation on algae and heterotrophs in a Mediterranean stream. <i>Hydrobiologia</i> , 1997 , 6, 129-140		19
127	Chemical characteristics of a mediterranean river as influenced by land uses in the watershed. <i>Water Research</i> , 1990 , 24, 143-155	12.5	19
126	Effects of nutrient enrichment on epipelic diatom assemblages in a nutrient-rich lowland stream, Pampa Region, Argentina. <i>Hydrobiologia</i> , 2016 , 766, 135-150	2.4	18
125	Factors limiting denitrification in a Mediterranean riparian forest. <i>Soil Biology and Biochemistry</i> , 2007 , 39, 2685-2688	7.5	18
124	Influence of grazing on triclosan toxicity to stream periphyton. Freshwater Biology, 2016, 61, 2002-2012	2 3.1	17
123	Structure and Activity of Rock and Sand Biofilms in a Mediterranean Stream. <i>Ecology</i> , 2001 , 82, 3232	4.6	17
122	Invertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditions. <i>Environmental Pollution</i> , 2019 , 252, 483-492	9.3	16
121	An appraisal of the sediment yield in western Mediterranean river basins. <i>Science of the Total Environment</i> , 2016 , 572, 538-553	10.2	16
120	Small Weirs, Big Effects: Disruption of Water Temperature Regimes with Hydrological Alteration in a Mediterranean Stream. <i>River Research and Applications</i> , 2016 , 32, 309-319	2.3	16
119	Stoichiometric homeostasis in the food web of a chronically nutrient-rich stream. <i>Freshwater Science</i> , 2014 , 33, 820-831	2	16
118	Factors affecting the periphytic diatom community in Mediterranean coastal wetlands (Emporda wetlands, NE Spain). <i>Archiv Fil Hydrobiologie</i> , 2004 , 160, 375-399		16
117	Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. <i>Biodiversity and Conservation</i> , 2000 , 9, 379-392	3.4	16

116	Measuring discontinuities in the ter river. <i>River Research and Applications</i> , 1989 , 3, 133-142		16
115	Immediate and legacy effects of urban pollution on river ecosystem functioning: A mesocosm experiment. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 169, 960-970	7	16
114	Water diversion reduces abundance and survival of two Mediterranean cyprinids. <i>Ecology of Freshwater Fish</i> , 2018 , 27, 481-491	2.1	15
113	Detection and attribution of global change effects on river nutrient dynamics in a large Mediterranean basin. <i>Biogeosciences</i> , 2015 , 12, 4085-4098	4.6	15
112	Impact of fullerenes in the bioaccumulation and biotransformation of venlafaxine, diuron and triclosan in river biofilms. <i>Environmental Research</i> , 2019 , 169, 377-386	7.9	15
111	Multiple stressor effects on biological quality elements in the Ebro River: Present diagnosis and predicted responses. <i>Science of the Total Environment</i> , 2018 , 630, 1608-1618	10.2	14
110	The Llobregat River Basin: A Paradigm of Impaired Rivers Under Climate Change Threats. <i>Handbook of Environmental Chemistry</i> , 2012 , 1-26	0.8	14
109	Organic matter decomposition by fungi in a Mediterranean forested stream: contribution of streambed substrata. <i>Annales De Limnologie</i> , 2004 , 40, 269-277	0.7	14
108	OBSERVACIONES-SOBRE DIATOMEAS CENTRALES DEL FITOPLANCTON DEL RIO EBRO, CON ESPECIAL INTERB EN ALGUNAS PEQUEAS CYCLOTELLA / OBSERVATIONS ON CENTRIC DIATOMS OF THE RIVER EBRO PHYTOPLANKTON, WITH SPECIAL INTEREST ON SOME SMALL	0.9	14
107	CYCLOTELLA Diatom Research, 1990 , 5, 141-154 Relationships between diatom assemblages and physico-chemical variables in the river ter (NE Spain). International Review of Hydrobiology, 1988 , 73, 171-179		14
106	Low contribution of internal metabolism to carbon dioxide emissions along lotic and lentic environments of a Mediterranean fluvial network. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 3030-3044	3.7	13
105	Weak Coherence in Abundance Patterns Between Bacterial Classes and Their Constituent OTUs Along a Regulated River. <i>Frontiers in Microbiology</i> , 2015 , 6, 1293	5.7	13
104	Periphyton as biological indicators in managed aquatic ecosystems. 2005 , 159-177		13
103	Fluvial biofilms exposed to desiccation and pharmaceutical pollution: New insights using metabolomics. <i>Science of the Total Environment</i> , 2018 , 618, 1382-1388	10.2	12
102	Effects of multiple stressors on river biofilms depend on the time scale. <i>Scientific Reports</i> , 2019 , 9, 158	104.9	12
101	Factors explaining the patterns of benthic chlorophyll-a distribution in a large agricultural Iberian watershed (Guadiana river). <i>Ecological Indicators</i> , 2014 , 36, 463-469	5.8	12
100	Variability of heterotrophic activity in Mediterranean stream biofilms: A multivariate analysis of physical-chemical and biological factors. <i>Aquatic Sciences</i> , 2000 , 62, 205-215	2.5	12
99	Composition and dynamics of a highly diverse diatom assemblage in a limestone stream. <i>Hydrobiologia</i> , 1990 , 190, 43-53	2.4	12

98	Resource limitation by freshwater snail (Stagnicola vulnerata) grazing pressure: an experimental study Fundamental and Applied Limnology, 2000 , 148, 517-532	1.9	12
97	Structure and architecture of a stromatolite from a Mediterranean stream. <i>Aquatic Microbial Ecology</i> , 2000 , 21, 161-168	1.1	12
96	Delineating the Continuum of Dissolved Organic Matter in Temperate River Networks. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2019GB006495	5.9	12
95	Chemical and Biological Changes in the Ter River Induced by a Series of Reservoirs 1987 , 373-382		12
94	Biofilm phosphorus uptake capacity as a tool for the assessment of pollutant effects in river ecosystems. <i>Ecotoxicology</i> , 2017 , 26, 271-282	2.9	11
93	Fullerenes Influence the Toxicity of Organic Micro-Contaminants to River Biofilms. <i>Frontiers in Microbiology</i> , 2018 , 9, 1426	5.7	11
92	Is the biological classification of benthic diatom communities concordant with ecotypes?. <i>Hydrobiologia</i> , 2012 , 695, 43-55	2.4	11
91	Diatoms 2009 , 149-156		11
90	Nutrient attenuation dynamics in effluent dominated watercourses. Water Research, 2019, 160, 330-33	8812.5	10
89	Effects of biofilm on river-bed scour. Science of the Total Environment, 2016, 572, 1033-1046	10.2	10
88	Microbial carbon processing along a river discontinuum. Freshwater Science, 2016, 35, 1133-1147	2	10
87	Leaf Litter Dynamics and Nitrous Oxide Emission in a Mediterranean Riparian Forest. <i>Journal of Environmental Quality</i> , 2003 , 32, 191	3.4	10
86	Geosmin occurrence in riverine cyanobacterial mats: is it causing a significant health hazard?. <i>Water Science and Technology</i> , 2004 , 49, 307-312	2.2	10
85	Nutrient and enzymatic adaptations of stream biofilms to changes in nitrogen and phosphorus supply. <i>Aquatic Microbial Ecology</i> , 2015 , 75, 91-102	1.1	10
84	Historical processes constrain metacommunity structure by shaping different pools of invertebrate	_	10
	taxa within the Orinoco basin. <i>Diversity and Distributions</i> , 2020 , 26, 49-61	5	
83	Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and metabolomics implications. <i>Science of the Total Environment</i> , 2020 , 704, 135333	10.2	10
83	Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and		10

(2016-2004)

80	Nuisance odours produced by benthic cyanobacteria in a Mediterranean river. <i>Water Science and Technology</i> , 2004 , 49, 25-31	2.2	9
79	Longitudinal changes of benthic algal biomass in a mediterranean river during two high production periods. <i>Archiv Fil Hydrobiologie</i> , 1992 , 124, 475-487		9
78	GLOBAL-FATE (version 1.0.0): A geographical information system (GIS)-based model for assessing contaminants fate in the global river network. <i>Geoscientific Model Development</i> , 2019 , 12, 5213-5228	6.3	9
77	Combined effects of urban pollution and hydrological stress on ecosystem functions of Mediterranean streams. <i>Science of the Total Environment</i> , 2021 , 753, 141971	10.2	9
76	Using equilibrium temperature to assess thermal disturbances in rivers. <i>Hydrological Processes</i> , 2015 , 29, 4350-4360	3.3	8
75	Does the severity of non-flow periods influence ecosystem structure and function of temporary streams? A mesocosm study. <i>Freshwater Biology</i> , 2018 , 63, 613-625	3.1	8
74	Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 934-45	5.1	8
73	Physico-Chemical Disturbances Associated with Spatial and Temporal Variation in a Mediterranean River. <i>Journal of the North American Benthological Society</i> , 1991 , 10, 2-13		8
72	Modeling the sedimentary response of a large Pyrenean basin to global change. <i>Journal of Soils and Sediments</i> , 2017 , 17, 2677-2690	3.4	7
71	Unravelling the effects of multiple stressors on diatom and macroinvertebrate communities in European river basins using structural and functional approaches. <i>Science of the Total Environment</i> , 2020 , 742, 140543	10.2	7
70	Water abstraction affects abundance, size-structure and growth of two threatened cyprinid fishes. <i>PLoS ONE</i> , 2017 , 12, e0175932	3.7	7
69	Exposure to single and binary mixtures of fullerenes and triclosan: Reproductive and behavioral effects in the freshwater snail Radix balthica. <i>Environmental Research</i> , 2019 , 176, 108565	7.9	7
68	Colombian ecosystems at the crossroad after the new peace deal. <i>Biodiversity and Conservation</i> , 2017 , 26, 3505-3507	3.4	7
67	Flood disturbance effects on benthic diatom assemblage structure in a semiarid river network. <i>Journal of Phycology</i> , 2015 , 51, 133-43	3	7
66	MODELKEY. Environmental Sciences Europe, 2010 , 22, 217-228	5	7
65	A stromatolitic cyanobacterial crust in a Mediterranean stream optimizes organic matter use. <i>Aquatic Microbial Ecology</i> , 1998 , 16, 131-141	1.1	7
64	Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. <i>Environment International</i> , 2020 , 143, 105993	12.9	7
63	Ecophysiology of River Algae 2016 , 197-217		6

62	Identifying reference benthic diatom communities in an agricultural watershed (Guadiana River, SW Spain). <i>Hydrobiologia</i> , 2012 , 695, 171-184	2.4	6
61	In-Stream Nutrient Flux and Retention in Relation to Land Use in the Llobregat River Basin. <i>Handbook of Environmental Chemistry</i> , 2012 , 69-92	0.8	6
60	Ecological factors that co-occur with geosmin production by benthic cyanobacteria. The case of the Llobregat River. <i>Algological Studies</i> , 2003 , 109, 579-592		6
59	. Phycologia, 2005 , 44, 678-684	2.7	6
58	Duration and frequency of non-flow periods affect the abundance and diversity of stream meiofauna. <i>Freshwater Biology</i> , 2020 , 65, 1906-1922	3.1	6
57	Identifying regions vulnerable to habitat degradation under future irrigation scenarios. <i>Environmental Research Letters</i> , 2016 , 11, 114025	6.2	6
56	Multiple Stressors Determine Community Structure and Estimated Function of River Biofilm Bacteria. <i>Applied and Environmental Microbiology</i> , 2020 , 86,	4.8	5
55	Ecoregional Characteristics Drive the Distribution Patterns of Neotropical Stream Diatoms. <i>Journal of Phycology</i> , 2020 , 56, 1053-1065	3	5
54	Epilithic biofilm metabolism during the high water flow period in an Andean neotropical stream. <i>Hydrobiologia</i> , 2014 , 728, 41-50	2.4	5
53	The Physical Framework and Historic Human Influences in the Ebro River. <i>Handbook of Environmental Chemistry</i> , 2010 , 1-20	0.8	5
52	Nostoc verrucosum (cyanobacteria) colonized by a chironomid larva in a mediterranean stream (Note) [] <i>Journal of Phycology</i> , 2000 , 36, 59-61	3	5
51	Does biofilm origin matter? Biofilm responses to non-flow period in permanent and temporary streams. <i>Freshwater Biology</i> , 2020 , 65, 514-523	3.1	5
50	Defining Multiple Stressor Implications 2019 , 1-22		5
49	Upstream refugia and dispersal ability may override benthic-community responses to high-Andean streams deforestation. <i>Biodiversity and Conservation</i> , 2019 , 28, 1513-1531	3.4	4
48	Local and regional environmental factors drive the spatial distribution of phototrophic biofilm assemblages in Mediterranean streams. <i>Hydrobiologia</i> , 2020 , 847, 2321-2336	2.4	4
47	Occurrence of regulated pollutants in populated Mediterranean basins: Ecotoxicological risk and effects on biological quality. <i>Science of the Total Environment</i> , 2020 , 747, 141224	10.2	4
46	Framing biophysical and societal implications of multiple stressor effects on river networks. <i>Science of the Total Environment</i> , 2021 , 753, 141973	10.2	4
45	A guideline to frame stressor effects in freshwater ecosystems. <i>Science of the Total Environment</i> , 2021 , 777, 146112	10.2	4

(2013-2017)

44	Biochemical quality of basal resources in a forested stream: effects of nutrient enrichment. <i>Aquatic Sciences</i> , 2017 , 79, 99-112	2.5	3
43	Effects of Emerging Contaminants on Biodiversity, Community Structure, and Adaptation of River Biota. <i>Handbook of Environmental Chemistry</i> , 2015 , 79-119	0.8	3
42	BALANCING CONSERVATION NEEDS WITH USES OF RIVER ECOSYSTEMS. <i>Acta Biologica Colombiana</i> , 2013 , 19, 3	0.5	3
41	Foreword: Global change and river ecosystems[mplications for structure, function, and ecosystem services. <i>Hydrobiologia</i> , 2010 , 657, 1-2	2.4	3
40	Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir. <i>Scientific Reports</i> , 2020 , 10, 11288	4.9	3
39	Duration of water flow interruption drives the structure and functional diversity of stream benthic diatoms. <i>Science of the Total Environment</i> , 2021 , 770, 144675	10.2	3
38	Summary, Implications and Recommendations for the Occurrence and Effects of Multiple Stressors in River Ecosystems 2019 , 375-380		3
37	The Use of Diatoms to Assess the Ecological Status in Catalan Rivers: Application of the WFD and Lessons Learned from the European Intercalibration Exercise. <i>Handbook of Environmental Chemistry</i> , 2015 , 65-80	0.8	2
36	Special Section: New developments and applications in the use of algae for monitoring rivers. Foreword. <i>Science of the Total Environment</i> , 2014 , 475, 157	10.2	2
35	Microbial Ecotoxicology: Looking to the Future 2017 , 339-352		2
35 34	Microbial Ecotoxicology: Looking to the Future 2017, 339-352 In response: The evidenceWhat actions are needed to effectively transfer from science to policy? An academic perspective. Environmental Toxicology and Chemistry, 2015, 34, 1208-10	3.8	2
	In response: The evidenceWhat actions are needed to effectively transfer from science to policy?	3.8 o.8	
34	In response: The evidenceWhat actions are needed to effectively transfer from science to policy? An academic perspective. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1208-10 Ecological Relevance of Key Toxicants in Aquatic Systems. <i>Handbook of Environmental Chemistry</i> ,		2
34	In response: The evidenceWhat actions are needed to effectively transfer from science to policy? An academic perspective. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1208-10 Ecological Relevance of Key Toxicants in Aquatic Systems. <i>Handbook of Environmental Chemistry</i> , 2011 , 315-339 Aquatic and Riparian Biodiversity in the Ebro Watershed: Prospects and Threats. <i>Handbook of</i>	0.8	2
34 33 32	In response: The evidenceWhat actions are needed to effectively transfer from science to policy? An academic perspective. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1208-10 Ecological Relevance of Key Toxicants in Aquatic Systems. <i>Handbook of Environmental Chemistry</i> , 2011 , 315-339 Aquatic and Riparian Biodiversity in the Ebro Watershed: Prospects and Threats. <i>Handbook of Environmental Chemistry</i> , 2010 , 121-138 The Effect of Multiple Stressors on Biological Communities in the Llobregat. <i>Handbook of</i>	0.8	2 2
34 33 32 31	In response: The evidenceWhat actions are needed to effectively transfer from science to policy? An academic perspective. Environmental Toxicology and Chemistry, 2015, 34, 1208-10 Ecological Relevance of Key Toxicants in Aquatic Systems. Handbook of Environmental Chemistry, 2011, 315-339 Aquatic and Riparian Biodiversity in the Ebro Watershed: Prospects and Threats. Handbook of Environmental Chemistry, 2010, 121-138 The Effect of Multiple Stressors on Biological Communities in the Llobregat. Handbook of Environmental Chemistry, 2012, 93-116	0.8	2 2 2
34 33 32 31 30	In response: The evidenceWhat actions are needed to effectively transfer from science to policy? An academic perspective. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1208-10 Ecological Relevance of Key Toxicants in Aquatic Systems. <i>Handbook of Environmental Chemistry</i> , 2011 , 315-339 Aquatic and Riparian Biodiversity in the Ebro Watershed: Prospects and Threats. <i>Handbook of Environmental Chemistry</i> , 2010 , 121-138 The Effect of Multiple Stressors on Biological Communities in the Llobregat. <i>Handbook of Environmental Chemistry</i> , 2012 , 93-116 The Role of Floodplains in Mitigating Diffuse Nitrate Pollution253-268 Assessing the ecological integrity after nutrient inputs in streams: The relevance of the observation	o.8 o.8	2 2 2 2

26	Bioconcentration and bioaccumulation of C fullerene and C epoxide in biofilms and freshwater snails (Radix sp.). <i>Environmental Research</i> , 2020 , 180, 108715	7.9	2
25	Historical legacies and contemporary processes shape beta diversity in Neotropical montane streams. <i>Journal of Biogeography</i> , 2021 , 48, 101-117	4.1	2
24	Diet quality and NSAIDs promote changes in formation of prostaglandins by an aquatic invertebrate. <i>Chemosphere</i> , 2020 , 257, 126892	8.4	1
23	Collection and Processing of River Organisms and Water Column Organisms. <i>Springer Protocols</i> , 2015 , 219-228	0.3	1
22	Intercalibration of ecological quality in European Mediterranean rivers. <i>Science of the Total Environment</i> , 2014 , 476-477, 743-4	10.2	1
21	Ecosystem Services in an Impacted Watershed. <i>Handbook of Environmental Chemistry</i> , 2012 , 347-368	0.8	1
20	Experiences and Lessons Learned on the Implementation of the Water Framework Directive in Selected European River Basins. <i>Handbook of Environmental Chemistry</i> , 2010 , 373-424	0.8	1
19	Algae in urban drinking waters in N.E. Spain. <i>Journal of Applied Phycology</i> , 1995 , 7, 455-460	3.2	1
18	The Iberian rivers 2022 , 181-224		1
17	Energy limitation or sensitive predators? Trophic and non-trophic impacts of wastewater pollution on stream food webs. <i>Ecology</i> , 2021 , e03587	4.6	1
16	Variabilidad espacial y temporal de la calidad del agua en el r i ò Urola (Guipuzkoa). <i>Ingenier</i> à <i>Del Agua</i> , 1998 , 5,	0.7	1
15	Organic matter availability during pre- and post-drought periods in a Mediterranean stream 2010 , 217-	232	1
14	Comparing fish assemblages and trophic ecology of permanent and intermittent reaches in a Mediterranean stream 2010 , 167-180		1
13	Biofilm pigments in temporary streams indicate duration and severity of drying. <i>Limnology and Oceanography</i> , 2021 , 66, 3313-3326	4.8	O
12	Impacts of climate change on stream benthic diatoms nation-wide perspective of reference conditions. <i>Hydrobiologia</i> , 2022 , 849, 1821-1837	2.4	0
11	Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers Science of the Total Environment, 2022, 154303	10.2	0
10	Ecosystem Responses to Emerging Contaminants: Fate and Effects of Pharmaceuticals in a Mediterranean River. <i>Handbook of Environmental Chemistry</i> , 2015 , 143-158	0.8	
9	Application of Microcosm and Mesocosm Experiments to Pollutant Effects in Biofilms. <i>Springer Protocols</i> , 2015 , 135-151	0.3	

LIST OF PUBLICATIONS

8	The Challenge: Assessing the effects of chemicals in freshwaters under multiple stress. Environmental Toxicology and Chemistry, 2015 , 34, 1206	3.8
7	Physiological Diversity and its Ecological Implications BY JOHN I. SPICER AND KEVIN J. GASTON x + 241 pp., 24.4 🛮 7.3 🗓 4.0 cm, ISBN 0 632 0545 2 paperback, GB £29.50, Oxford, UK: Blackwell Science, 1999. <i>Environmental Conservation</i> , 2001 , 28, 86-94	3.3
6	Primary production of epilithic communities in undisturbed Mediterranean streams. <i>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology</i> , 1994 , 25, 1761-1764	
5	Green and brown stream trophic food chains show specific responses to constant or hump-shaped inputs of copper. <i>Science of the Total Environment</i> , 2022 , 807, 150740	10.2
4	Understanding effects of global change on river ecosystems: science to support policy in a changing world 2010 , 3-18	
3	An Introduction to the Geography of Multiple Stressors 2019 , 131-137	
2	Nutrient stream attenuation is altered by the duration and frequency of flow intermittency. <i>Ecohydrology</i> ,e2351	2.5
1	Drivers of the diversity of diatoms in an oligotrophic Andean stream 2022 , 58, 2	