Sergi Sabater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8966774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology, 1998, 10, 215-224.	2.8	374
2	Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and Bioanalytical Chemistry, 2007, 387, 1425-1434.	3.7	341
3	Protecting and restoring Europe's waters: An analysis of the future development needs of the Water Framework Directive. Science of the Total Environment, 2019, 658, 1228-1238.	8.0	295
4	Why Should We Care About Temporary Waterways?. Science, 2014, 343, 1080-1081.	12.6	270
5	Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the Total Environment, 2016, 540, 63-70.	8.0	265
6	Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society, 2005, 24, 919-933.	3.1	237
7	Nitrogen Removal by Riparian Buffers along a European Climatic Gradient: Patterns and Factors of Variation. Ecosystems, 2003, 6, 0020-0030.	3.4	214
8	Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Science of the Total Environment, 2017, 577, 1-18.	8.0	192
9	Balancing the health benefits and environmental risks of pharmaceuticals: Diclofenac as an example. Environment International, 2015, 85, 327-333.	10.0	171
10	Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Science of the Total Environment, 2014, 470-471, 567-577.	8.0	168
11	Bridging levels of pharmaceuticals in river water with biological community structure in the llobregat river basin (northeast spain). Environmental Toxicology and Chemistry, 2009, 28, 2706-2714.	4.3	166
12	Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biology, 2004, 49, 960-971.	2.4	165
13	Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project. Science of the Total Environment, 2015, 503-504, 3-9.	8.0	161
14	Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Science of the Total Environment, 2018, 619-620, 328-337.	8.0	154
15	Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecological Indicators, 2014, 37, 199-209.	6.3	150
16	Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquatic Toxicology, 2010, 100, 346-353.	4.0	149
17	Assessing the Impact of Multiple Stressors on Aquatic Biota: The Receptor's Side Matters. Environmental Science & Technology, 2014, 48, 7690-7696.	10.0	145
18	Biofilm Structure and Function and Possible Implications for Riverine DOC Dynamics. Microbial Ecology, 2004, 47, 316-28.	2.8	142

#	Article	IF	CITATIONS
19	The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia, 2013, 719, 383-425.	2.0	142
20	Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environmental Pollution, 2016, 210, 121-128.	7.5	142
21	Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. Journal of Hydrology, 2010, 383, 52-61.	5.4	138
22	Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Science of the Total Environment, 2016, 540, 241-249.	8.0	137
23	Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. Journal of the North American Benthological Society, 2000, 19, 609-620.	3.1	136
24	The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia, 2002, 469, 149-156.	2.0	133
25	Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere, 2009, 76, 1392-1401.	8.2	131
26	Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Science of the Total Environment, 2016, 540, 250-259.	8.0	128
27	Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia, 2013, 712, 129-143.	2.0	127
28	Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Research, 1999, 33, 1989-1996.	11.3	124
29	Relevance of Polymeric Matrix Enzymes During Biofilm Formation. Microbial Ecology, 2008, 56, 427-436.	2.8	120
30	Trace metal concentration and fish size: Variation among fish species in a Mediterranean river. Ecotoxicology and Environmental Safety, 2014, 107, 154-161.	6.0	120
31	Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research, 2005, 39, 73-82.	11.3	117
32	Response of community structure to sustained drought in Mediterranean rivers. Journal of Hydrology, 2010, 383, 135-146.	5.4	115
33	Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Science of the Total Environment, 2017, 590-591, 484-494.	8.0	115
34	Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant. Journal of Hazardous Materials, 2015, 282, 165-173.	12.4	110
35	Title is missing!. , 2000, 12, 113-124.		108
36	Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river. Environmental Pollution, 2013, 178, 220-228.	7.5	107

#	Article	IF	CITATIONS
37	Translocation of Microbenthic Algal Assemblages Used for In Situ Analysis of Metal Pollution in Rivers. Archives of Environmental Contamination and Toxicology, 1999, 37, 19-28.	4.1	105
38	COMMUNITY DYNAMICS AND METABOLISM OF BENTHIC ALGAE COLONIZING WOOD AND ROCK SUBSTRATA IN A FOREST STREAM. Journal of Phycology, 1998, 34, 561-567.	2.3	104
39	Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiology Ecology, 2013, 84, 316-331.	2.7	104
40	Effects of human-driven water stress on river ecosystems: a meta-analysis. Scientific Reports, 2018, 8, 11462.	3.3	104
41	Influences of the stream groundwater hydrology on nitrate concentration in unsaturated riparian area bounded by an intermittent Mediterranean stream. Water Resources Research, 2003, 39, .	4.2	102
42	Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere, 2013, 92, 1126-1135.	8.2	102
43	River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors. Science of the Total Environment, 2017, 596-597, 465-480.	8.0	102
44	LIGHT HISTORY INFLUENCES THE SENSITIVITY TO ATRAZINE IN PERIPHYTIC ALGAE. Journal of Phycology, 1998, 34, 233-241.	2.3	100
45	Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshwater Biology, 2012, 57, 1565-1578.	2.4	100
46	Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers. Science of the Total Environment, 2015, 503-504, 133-141.	8.0	99
47	Multifunctionality and Diversity in Bacterial Biofilms. PLoS ONE, 2011, 6, e23225.	2.5	99
48	Influence of Algal Biomass on Extracellular Enzyme Activity in River Biofilms. Microbial Ecology, 2000, 40, 16-24.	2.8	97
49	Title is missing!. Journal of Applied Phycology, 2002, 14, 27-39.	2.8	97
50	Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Science of the Total Environment, 2008, 404, 196-206.	8.0	96
51	Mixed effects of effluents from a wastewater treatment plant on river ecosystem metabolism: subsidy or stress?. Freshwater Biology, 2015, 60, 1398-1410.	2.4	96
52	Effect of primary producers on the heterotrophic metabolism of a stream biofilm. Freshwater Biology, 1999, 41, 729-736.	2.4	95
53	Runoff Trends Driven by Climate and Afforestation in a Pyrenean Basin. Land Degradation and Development, 2016, 27, 823-838.	3.9	94
54	STRUCTURE AND ACTIVITY OF ROCK AND SAND BIOFILMS IN A MEDITERRANEAN STREAM. Ecology, 2001, 82, 3232-3245.	3.2	93

#	Article	IF	CITATIONS
55	Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Science of the Total Environment, 2014, 468-469, 715-723.	8.0	92
56	Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. Journal of the North American Benthological Society, 2007, 26, 54-69.	3.1	91
57	Combined scenarios of chemical and ecological quality under water scarcity in Mediterranean rivers. TrAC - Trends in Analytical Chemistry, 2011, 30, 1269-1278.	11.4	91
58	Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Science of the Total Environment, 2016, 540, 144-157.	8.0	90
59	Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences, 2011, 73, 485-497.	1.5	89
60	STRUCTURE AND FUNCTION OF BENTHIC ALGAL COMMUNITIES IN AN EXTREMELY ACID RIVER1. Journal of Phycology, 2003, 39, 481-489.	2.3	88
61	Stream Biofilm Responses to Flow Intermittency: From Cells to Ecosystems. Frontiers in Environmental Science, 2016, 4, .	3.3	88
62	Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquatic Toxicology, 2003, 64, 165-175.	4.0	87
63	Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem. Water Research, 2016, 100, 126-136.	11.3	86
64	The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnology and Oceanography, 2004, 49, 1713-1721.	3.1	85
65	Title is missing!. Journal of Applied Phycology, 1998, 10, 203-213.	2.8	83
66	Alterations of the Global Water Cycle and their Effects on River Structure, Function and Services. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2008, 1, 75-88.	1.0	83
67	A tale of pipes and reactors: Controls on the inâ€stream dynamics of dissolved organic matter in rivers. Limnology and Oceanography, 2017, 62, S85.	3.1	82
68	Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (int11) and sul1 genes within stable streambed bacterial communities. Water Research, 2018, 138, 77-85.	11.3	82
69	Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron. Science of the Total Environment, 2011, 409, 3129-3137.	8.0	81
70	Least Disturbed Condition for European Mediterranean rivers. Science of the Total Environment, 2014, 476-477, 745-756.	8.0	80
71	Pollution-induced community tolerance to non-steroidal anti-inflammatory drugs (NSAIDs) in fluvial biofilm communities affected by WWTP effluents. Chemosphere, 2014, 112, 185-193.	8.2	80
72	Recent perspectives on temporary river ecology. Aquatic Sciences, 2011, 73, 453-457.	1.5	77

#	Article	lF	CITATIONS
73	Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms. Science of the Total Environment, 2015, 503-504, 159-170.	8.0	76
74	Microbial biofilm structure and organic matter use in mediterranean streams. Hydrobiologia, 2013, 719, 43-58.	2.0	74
75	Effects of atrazine on periphyton under grazing pressure. Aquatic Toxicology, 2001, 55, 239-249.	4.0	73
76	Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates. Talanta, 2015, 132, 373-381.	5.5	73
77	Organic matter availability during pre- and post-drought periods in a Mediterranean stream. Hydrobiologia, 2010, 657, 217-232.	2.0	72
78	Interaction between local hydrodynamics and algal community in epilithic biofilm. Water Research, 2013, 47, 2153-2163.	11.3	70
79	When Water Vanishes: Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams. Ecosystems, 2016, 19, 710-723.	3.4	70
80	SEASONAL VARIATIONS IN PHOTOSYNTHESIS-IRRADIANCE RESPONSES BY BIOFILMS IN MEDITERRANEAN STREAMS1. Journal of Phycology, 1995, 31, 727-735.	2.3	69
81	Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwater Biology, 1995, 33, 373-383.	2.4	69
82	Changes in atrazine toxicity throughout succession of stream periphyton communities. Journal of Applied Phycology, 1997, 9, 137-146.	2.8	66
83	Water quality assessment of rivers using diatom metrics across Mediterranean Europe: A methods intercalibration exercise. Science of the Total Environment, 2014, 476-477, 768-776.	8.0	66
84	Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology, 2004, 49, 463-473.	2.4	65
85	Availability of glucose and light modulates the structure and function of a microbial biofilm. FEMS Microbiology Ecology, 2009, 69, 27-42.	2.7	65
86	Ecological and biogeographical aspects of diatom distribution in Pyrenean springs. British Phycological Journal, 1992, 27, 203-213.	1.2	64
87	EFFECT OF COPPER ON ALGAL COMMUNITIES FROM OLIGOTROPHIC CALCAREOUS STREAMS1. Journal of Phycology, 2002, 38, 241-248.	2.3	64
88	BENTHIC MICROALGAL COLONIZATION IN STREAMS OF DIFFERING RIPARIAN COVER AND LIGHT AVAILABILITY. Journal of Phycology, 2004, 40, 1004-1012.	2.3	64
89	Fluvial biofilms: A pertinent tool to assess β-blockers toxicity. Aquatic Toxicology, 2010, 96, 225-233.	4.0	64
90	Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. Environmental Pollution, 2016, 210, 303-314.	7.5	63

#	Article	IF	CITATIONS
91	The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream. Hydrology and Earth System Sciences, 2002, 6, 515-526.	4.9	62
92	Ecological implications of mass growth of benthic cyanobacteria in rivers. Aquatic Microbial Ecology, 2003, 32, 175-184.	1.8	62
93	Some factors affecting distribution of diatom assemblages in Pyrenean springs. Freshwater Biology, 1990, 24, 493-507.	2.4	61
94	Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. Water Research, 1998, 32, 1067-1074.	11.3	61
95	Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales De Limnologie, 2007, 43, 1-11.	0.6	61
96	Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. Environmental Research, 2017, 156, 485-493.	7.5	61
97	Organic matter availability structures microbial biomass and activity in a Mediterranean stream. Freshwater Biology, 2009, 54, 2025-2036.	2.4	59
98	Consistency in Diatom Response to Metal-Contaminated Environments. Handbook of Environmental Chemistry, 2012, , 117-146.	0.4	59
99	Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshwater Biology, 2014, 59, 1816-1829.	2.4	58
100	Labile and Recalcitrant Organic Matter Utilization by River Biofilm Under Increasing Water Temperature. Microbial Ecology, 2012, 64, 593-604.	2.8	57
101	Comparing fish assemblages and trophic ecology of permanent and intermittent reaches in a Mediterranean stream. Hydrobiologia, 2010, 657, 167-180.	2.0	56
102	Variability in Zinc Tolerance, Measured as Incorporation of Radio-Labeled Carbon Dioxide and Thymidine, in Periphyton Communities Sampled from 15 European River Stretches. Archives of Environmental Contamination and Toxicology, 2003, 44, 17-29.	4.1	54
103	Ecology and morphological variability of Aulacoseira granulata (Bacillariophyceae) in Spanish reservoirs. Journal of Plankton Research, 1995, 17, 1-16.	1.8	53
104	Assessing the ecological effects of water stress and pollution in a temporary river - Implications for water management. Science of the Total Environment, 2018, 618, 1591-1604.	8.0	53
105	Multiple stressor effects on biodiversity and ecosystem functioning in a Mediterranean temporary river. Science of the Total Environment, 2019, 647, 1179-1187.	8.0	52
106	ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM ¹ . Journal of Phycology, 2008, 44, 564-572.	2.3	51
107	Epilithic diatom assemblages and their relationship to environmental characteristics in an agricultural watershed (Guadiana River, SW Spain). Ecological Indicators, 2009, 9, 693-703.	6.3	51
108	The effect of copper exposure on a simple aquatic food chain. Aquatic Toxicology, 2003, 63, 283-291.	4.0	50

#	Article	IF	CITATIONS
109	Effect of climate on the trophic structure of temperate forested streams. A comparison of Mediterranean and Atlantic streams. Science of the Total Environment, 2008, 390, 475-484.	8.0	50
110	Increasing extent of periods of no flow in intermittent waterways promotes heterotrophy. Freshwater Biology, 2015, 60, 1810-1823.	2.4	50
111	Dam regulation and riverine food-web structure in a Mediterranean river. Science of the Total Environment, 2018, 625, 301-310.	8.0	50
112	Title is missing!. Journal of Applied Phycology, 2002, 14, 41-48.	2.8	49
113	Responses of biofilms to combined nutrient and metal exposure. Environmental Toxicology and Chemistry, 2002, 21, 626-632.	4.3	48
114	The Iberian Rivers. , 2009, , 113-149.		48
115	Significant ecological impact on the progression of fluoroquinolone resistance in Escherichia coli with increased community use of moxifloxacin, levofloxacin and amoxicillin/clavulanic acid. Journal of Antimicrobial Chemotherapy, 2011, 66, 664-669.	3.0	48
116	Wastewater pollution differently affects the antibiotic resistance gene pool and biofilm bacterial communities across streambed compartments. Molecular Ecology, 2017, 26, 5567-5581.	3.9	47
117	Comparing the response of biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil spillage in a Mediterranean river (NE Catalunya, Spain). Chemosphere, 2007, 66, 1206-1216.	8.2	46
118	Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquatic Botany, 2008, 88, 32-38.	1.6	46
119	Understanding effects of global change on river ecosystems: science to support policy in a changing world. Hydrobiologia, 2010, 657, 3-18.	2.0	46
120	Are pharmaceuticals more harmful than other pollutants to aquatic invertebrate species: A hypothesis tested using multi-biomarker and multi-species responses in field collected and transplanted organisms. Chemosphere, 2011, 85, 1548-1554.	8.2	46
121	Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian basins. Environmental Science and Pollution Research, 2012, 19, 918-933.	5.3	46
122	Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry, 2015, 123, 429-446.	3.5	46
123	Successional dynamics of the phytoplankton in the lower part of the river Ebro. Journal of Plankton Research, 1990, 12, 573-592.	1.8	45
124	Contamination patterns and attenuation of pharmaceuticals in a temporary Mediterranean river. Science of the Total Environment, 2019, 647, 561-569.	8.0	45
125	Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. Aquatic Sciences, 1999, 61, 122.	1.5	44
126	Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream fig: 3. Fundamental and Applied Limnology, 1997, 140, 261-271.	0.7	44

#	Article	IF	CITATIONS
127	Long-term moderate nutrient inputs enhance autotrophy in a forested Mediterranean stream. Freshwater Biology, 2011, 56, 1266-1280.	2.4	43
128	Multipleâ€stressor effects on river biofilms under different hydrological conditions. Freshwater Biology, 2016, 61, 2102-2115.	2.4	43
129	Impact of urban chemical pollution on water quality in small, rural and effluent-dominated Mediterranean streams and rivers. Science of the Total Environment, 2018, 613-614, 763-772.	8.0	43
130	Heterotrophic metabolism in a forest stream sediment: surface versus subsurface zones. Aquatic Microbial Ecology, 1998, 16, 143-151.	1.8	43
131	Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream. Hydrobiologia, 1996, 335, 107-113.	2.0	42
132	Variable discharge alters habitat suitability for benthic algae and cyanobacteria in a forested Mediterranean stream. Marine and Freshwater Research, 2010, 61, 441.	1.3	42
133	Nutrients versus emerging contaminants–Or a dynamic match between subsidy and stress effects on stream biofilms. Environmental Pollution, 2016, 212, 208-215.	7.5	41
134	The relevance of the community approach linking chemical and biological analyses in pollution assessment. TrAC - Trends in Analytical Chemistry, 2009, 28, 619-626.	11.4	40
135	Examining the Demand for Ecosystem Services: The Value of Stream Restoration for Drinking Water Treatment Managers in the Llobregat River, Spain. Ecological Economics, 2013, 90, 196-205.	5.7	39
136	Integrating ecosystem services in river basin management plans. Journal of Applied Ecology, 2016, 53, 865-875.	4.0	39
137	Desiccation events change the microbial response to gradients of wastewater effluent pollution. Water Research, 2019, 151, 371-380.	11.3	39
138	Is chemical contamination linked to the diversity of biological communities in rivers?. TrAC - Trends in Analytical Chemistry, 2009, 28, 592-602.	11.4	38
139	Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel CSA-QHTS screening method. Science Advances, 2016, 2, e1601272.	10.3	38
140	Title is missing!. Biodiversity and Conservation, 2003, 12, 2443-2454.	2.6	37
141	Does Grazing Pressure Modify Diuron Toxicity in a Biofilm Community?. Archives of Environmental Contamination and Toxicology, 2010, 58, 955-962.	4.1	37
142	Effects of nutrient inputs in a forested Mediterranean stream under moderate light availability. Archiv Für Hydrobiologie, 2005, 163, 479-496.	1.1	36
143	The nematode community in cyanobacterial biofilms in the river Llobregat, Spain. Nematology, 2006, 8, 909-919.	0.6	36
144	What do we still need to know about the ecohydrology of riparian zones?. Ecohydrology, 2010, 3, 373-377.	2.4	36

#	Article	IF	CITATIONS
145	Drought-induced discontinuities in the source and degradation of dissolved organic matter in a Mediterranean river. Biogeochemistry, 2016, 127, 125-139.	3.5	36
146	The Biota of Intermittent Rivers and Ephemeral Streams: Algae and Vascular Plants. , 2017, , 189-216.		36
147	Algal biomass in a disturbed Atlantic river: water quality relationships and environmental implications. Science of the Total Environment, 2000, 263, 185-195.	8.0	35
148	Influence of Phosphate on the Response of Periphyton to Atrazine Exposure. Archives of Environmental Contamination and Toxicology, 2007, 52, 32-37.	4.1	35
149	Leaf Litter Dynamics and Nitrous Oxide Emission in a Mediterranean Riparian Forest. Journal of Environmental Quality, 2003, 32, 191-197.	2.0	34
150	Differential effects of nutrients and light on the primary production of stream algae and mosses. Fundamental and Applied Limnology, 2007, 170, 1-10.	0.7	34
151	Organic matter characteristics in a Mediterranean stream through amino acid composition: changes driven by intermittency. Aquatic Sciences, 2011, 73, 523-535.	1.5	34
152	Hydrological variation modulates pharmaceutical levels and biofilm responses in a Mediterranean river. Science of the Total Environment, 2014, 472, 1052-1061.	8.0	34
153	The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees). Geomorphology, 2017, 293, 211-226.	2.6	34
154	Impact of fullerenes in the bioaccumulation and biotransformation of venlafaxine, diuron and triclosan in river biofilms. Environmental Research, 2019, 169, 377-386.	7.5	34
155	Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe. Science of the Total Environment, 2019, 651, 895-908.	8.0	34
156	Drought episode modulates the response of river biofilms to triclosan. Aquatic Toxicology, 2013, 127, 36-45.	4.0	33
157	Effects of Duration, Frequency, and Severity of the Non-flow Period on Stream Biofilm Metabolism. Ecosystems, 2019, 22, 1393-1405.	3.4	33
158	Wood and leaf debris input in a Mediterranean stream: The influence of riparian vegetation. Fundamental and Applied Limnology, 2001, 153, 91-102.	0.7	33
159	Water quality and diatom communities in two catalan rivers (N.E. Spain). Water Research, 1987, 21, 901-911.	11.3	32
160	Linking in-stream nutrient flux to land use and inter-annual hydrological variability at the watershed scale. Science of the Total Environment, 2012, 440, 72-81.	8.0	32
161	Biofilm functional responses to the rehydration of a dry intermittent stream. Hydrobiologia, 2014, 727, 185-195.	2.0	32
162	An assessment of recent trophic changes in Windermere South Basin (England) based on diatom remains and fossil pigments. Journal of Paleolimnology, 1995, 14, 151-163.	1.6	31

#	Article	IF	CITATIONS
163	Hydrological characterization of dammed rivers in the NW Mediterranean region. Hydrological Processes, 2016, 30, 1691-1707.	2.6	31
164	Regulation causes nitrogen cycling discontinuities in Mediterranean rivers. Science of the Total Environment, 2016, 540, 168-177.	8.0	31
165	Effects of copper on algal communities at different current velocities. Journal of Applied Phycology, 2002, 14, 391-398.	2.8	30
166	Colonisation of Introduced Timber by Algae and Invertebrates, and its Potential Role in Aquatic Ecosystem Restoration. Hydrobiologia, 2006, 556, 303-316.	2.0	30
167	Effects of Hydrologic Alterations on the Ecological Quality of River Ecosystems. Handbook of Environmental Chemistry, 2009, , 15-39.	0.4	30
168	The dynamics of biofilm bacterial communities is driven by flow wax and wane in a temporary stream. Limnology and Oceanography, 2014, 59, 2057-2067.	3.1	30
169	Invertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditions. Environmental Pollution, 2019, 252, 483-492.	7.5	30
170	Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. Hydrobiologia, 2012, 695, 281-291.	2.0	29
171	Transport of sediment borne contaminants in a Mediterranean river during a high flow event. Science of the Total Environment, 2018, 633, 1392-1402.	8.0	29
172	Protecting U.S. temporary waterways. Science, 2018, 361, 856-857.	12.6	29
173	Delineating the Continuum of Dissolved Organic Matter in Temperate River Networks. Global Biogeochemical Cycles, 2020, 34, e2019GB006495.	4.9	29
174	Contribution of epilithic diatoms to benthic-pelagic coupling in a temperate river. Aquatic Microbial Ecology, 2013, 69, 47-57.	1.8	28
175	Reservoirs override seasonal variability of phytoplankton communities in a regulated Mediterranean river. Science of the Total Environment, 2014, 475, 225-233.	8.0	28
176	Flow regulation increases food hain length through omnivory mechanisms in a Mediterranean river network. Freshwater Biology, 2016, 61, 1536-1549.	2.4	28
177	Effects of nutrient enrichment on epipelic diatom assemblages in a nutrient-rich lowland stream, Pampa Region, Argentina. Hydrobiologia, 2016, 766, 135-150.	2.0	28
178	Multistressor effects on river biofilms under global change conditions. Science of the Total Environment, 2018, 627, 1-10.	8.0	28
179	Immediate and legacy effects of urban pollution on river ecosystem functioning: A mesocosm experiment. Ecotoxicology and Environmental Safety, 2019, 169, 960-970.	6.0	28
180	Chemical characteristics of a mediterranean river as influenced by land uses in the watershed. Water Research, 1990, 24, 143-155.	11.3	27

#	Article	IF	CITATIONS
181	Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fundamental and Applied Limnology, 2009, 173, 255-264.	0.7	27
182	Fungal and Bacterial Colonization of Submerged Leaf Litter in a Mediterranean Stream. International Review of Hydrobiology, 2011, 96, 221-234.	0.9	27
183	Patterns of biofilm formation in two streams from different bioclimatic regions: analysis of microbial community structure and metabolism. Hydrobiologia, 2012, 695, 83-96.	2.0	27
184	Modelling epilithic biofilms combining hydrodynamics, invertebrate grazing and algal traits. Freshwater Biology, 2014, 59, 1213-1228.	2.4	27
185	Diatom responses to sewage inputs and hydrological alteration in Mediterranean streams. Environmental Pollution, 2018, 238, 369-378.	7.5	27
186	Effects of multiple stressors on river biofilms depend on the time scale. Scientific Reports, 2019, 9, 15810.	3.3	27
187	Unravelling the effects of multiple stressors on diatom and macroinvertebrate communities in European river basins using structural and functional approaches. Science of the Total Environment, 2020, 742, 140543.	8.0	27
188	Effects of removal of riparian vegetation on algae and heterotrophs in a Mediterranean stream. Hydrobiologia, 1997, 6, 129-140.	0.9	25
189	An appraisal of the sediment yield in western Mediterranean river basins. Science of the Total Environment, 2016, 572, 538-553.	8.0	25
190	Influence of grazing on triclosan toxicity to stream periphyton. Freshwater Biology, 2016, 61, 2002-2012.	2.4	25
191	The role of drought in the impact of climatic change on the microbiota of peatland streams. Freshwater Biology, 1994, 32, 223-230.	2.4	24
192	Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes. Environmental Research Letters, 2013, 8, 014002.	5.2	24
193	Biofilm Responses to Flow Regulation by Dams in Mediterranean Rivers. River Research and Applications, 2015, 31, 1003-1016.	1.7	24
194	Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and metabolomics implications. Science of the Total Environment, 2020, 704, 135333.	8.0	24
195	Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. Biodiversity and Conservation, 2000, 9, 379-392.	2.6	23
196	Factors affecting the periphytic diatom community in Mediterranean coastal wetlands (Emporda) Tj ETQq0 0 0 rg	;BT_/Overlc	ock 10 Tf 50
197	Factors limiting denitrification in a Mediterranean riparian forest. Soil Biology and Biochemistry, 2007, 39, 2685-2688.	8.8	23

198	Contribution of microbial and invertebrate communities to leaf litter colonization in a Mediterranean stream. Journal of the North American Benthological Society, 2009, 28, 34-43.	3.1	23	
-----	--	-----	----	--

#	Article	IF	CITATIONS
199	Small Weirs, Big Effects: Disruption of Water Temperature Regimes with Hydrological Alteration in a Mediterranean Stream. River Research and Applications, 2016, 32, 309-319.	1.7	23
200	Multiple stressor effects on biological quality elements in the Ebro River: Present diagnosis and predicted responses. Science of the Total Environment, 2018, 630, 1608-1618.	8.0	23
201	Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. Science of the Total Environment, 2022, 828, 154303.	8.0	23
202	Phosphorus use by planktonic communities in a large regulated Mediterranean river. Science of the Total Environment, 2012, 426, 180-187.	8.0	22
203	Photosynthetic pigment changes and adaptations in biofilms in response to flow intermittency. Aquatic Sciences, 2014, 76, 565-578.	1.5	22
204	Fluvial biofilms exposed to desiccation and pharmaceutical pollution: New insights using metabolomics. Science of the Total Environment, 2018, 618, 1382-1388.	8.0	22
205	Relationships between diatom assemblages and physico-chemical variables in the river ter (NE Spain). International Review of Hydrobiology, 1988, 73, 171-179.	0.6	21
206	Combined effects of urban pollution and hydrological stress on ecosystem functions of Mediterranean streams. Science of the Total Environment, 2021, 753, 141971.	8.0	21
207	Diatoms. , 2009, , 149-156.		20
208	Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network?. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 728-740.	3.0	20
209	Stoichiometric homeostasis in the food web of a chronically nutrient-rich stream. Freshwater Science, 2014, 33, 820-831.	1.8	20
210	Low contribution of internal metabolism to carbon dioxide emissions along lotic and lentic environments of a Mediterranean fluvial network. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3030-3044.	3.0	20
211	Structure and architecture of a stromatolite from a Mediterranean stream. Aquatic Microbial Ecology, 2000, 21, 161-168.	1.8	20
212	Measuring discontinuities in the ter river. River Research and Applications, 1989, 3, 133-142.	0.8	19
213	Structure and Activity of Rock and Sand Biofilms in a Mediterranean Stream. Ecology, 2001, 82, 3232.	3.2	19
214	Historical processes constrain metacommunity structure by shaping different pools of invertebrate taxa within the Orinoco basin. Diversity and Distributions, 2020, 26, 49-61.	4.1	19
215	Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. Environment International, 2020, 143, 105993.	10.0	19
216	Organic matter decomposition by fungi in a Mediterranean forested stream : contribution of streambed substrata. Annales De Limnologie, 2004, 40, 269-277.	0.6	18

Sergi Sabater

#	Article	IF	CITATIONS
217	Water diversion reduces abundance and survival of two Mediterranean cyprinids. Ecology of Freshwater Fish, 2018, 27, 481-491.	1.4	18
218	Factors explaining the patterns of benthic chlorophyll-a distribution in a large agricultural Iberian watershed (Guadiana river). Ecological Indicators, 2014, 36, 463-469.	6.3	17
219	Detection and attribution of global change effects on river nutrient dynamics in a large Mediterranean basin. Biogeosciences, 2015, 12, 4085-4098.	3.3	17
220	Biofilm phosphorus uptake capacity as a tool for the assessment of pollutant effects in river ecosystems. Ecotoxicology, 2017, 26, 271-282.	2.4	17
221	Chemical and Biological Changes in the Ter River Induced by a Series of Reservoirs. , 1987, , 373-382.		17
222	Variability of heterotrophic activity in Mediterranean stream biofilms: A multivariate analysis of physical-chemical and biological factors. Aquatic Sciences, 2000, 62, 205-215.	1.5	16
223	Leaf Litter Dynamics and Nitrous Oxide Emission in a Mediterranean Riparian Forest. Journal of Environmental Quality, 2003, 32, 191.	2.0	16
224	Nuisance odours produced by benthic cyanobacteria in a Mediterranean river. Water Science and Technology, 2004, 49, 25-31.	2.5	16
225	The Llobregat River Basin: A Paradigm of Impaired Rivers Under Climate Change Threats. Handbook of Environmental Chemistry, 2012, , 1-26.	0.4	16
226	Fullerenes Influence the Toxicity of Organic Micro-Contaminants to River Biofilms. Frontiers in Microbiology, 2018, 9, 1426.	3.5	16
227	GLOBAL-FATE (version 1.0.0): A geographical information system (GIS)-based model for assessing contaminants fate in the global river network. Geoscientific Model Development, 2019, 12, 5213-5228.	3.6	16
228	Multiple Stressors Determine Community Structure and Estimated Function of River Biofilm Bacteria. Applied and Environmental Microbiology, 2020, 86, .	3.1	16
229	Resource limitation by freshwater snail (Stagnicola vulnerata) grazing pressure: an experimental study Fundamental and Applied Limnology, 2000, 148, 517-532.	0.7	16
230	OBSERVACIONES-SOBRE DIATOMEAS CENTRALES DEL FITOPLANCTON DEL RIO EBRO, CON ESPECIAL INTERÉS EN ALGUNAS PEQUEÃ'ASCYCLOTELLA/ OBSERVATIONS ON CENTRIC DIATOMS OF THE RIVER EBRO PHYTOPLANKTON, WITH SPECIAL INTEREST ON SOME SMALLCYCLOTELLA Diatom Research, 1990, 5, 141-154.	1.2	15
231	Effects of olive mill wastewater discharge on benthic biota in Mediterranean streams. Environmental Pollution, 2019, 254, 113057.	7.5	15
232	Duration of water flow interruption drives the structure and functional diversity of stream benthic diatoms. Science of the Total Environment, 2021, 770, 144675.	8.0	15
233	A guideline to frame stressor effects in freshwater ecosystems. Science of the Total Environment, 2021, 777, 146112.	8.0	15
234	Periphyton as biological indicators in managed aquatic ecosystems , 2005, , 159-177.		15

14

#	Article	IF	CITATIONS
235	Longitudinal changes of benthic algal biomass in a mediterranean river during two high production periods. Archiv Für Hydrobiologie, 1992, 124, 475-487.	1.1	15
236	The Iberian rivers. , 2022, , 181-224.		15
237	Weak Coherence in Abundance Patterns Between Bacterial Classes and Their Constituent OTUs Along a Regulated River. Frontiers in Microbiology, 2015, 6, 1293.	3.5	14
238	Effects of biofilm on river-bed scour. Science of the Total Environment, 2016, 572, 1033-1046.	8.0	14
239	Microbial carbon processing along a river discontinuum. Freshwater Science, 2016, 35, 1133-1147.	1.8	14
240	A stromatolitic cyanobacterial crust in a Mediterranean stream optimizes organic matter use. Aquatic Microbial Ecology, 1998, 16, 131-141.	1.8	14
241	Composition and dynamics of a highly diverse diatom assemblage in a limestone stream. Hydrobiologia, 1990, 190, 43-53.	2.0	13
242	Nutrient attenuation dynamics in effluent dominated watercourses. Water Research, 2019, 160, 330-338.	11.3	13
243	Colombian ecosystems at the crossroad after the new peace deal. Biodiversity and Conservation, 2017, 26, 3505-3507.	2.6	12
244	Physico-Chemical Disturbances Associated with Spatial and Temporal Variation in a Mediterranean River. Journal of the North American Benthological Society, 1991, 10, 2-13.	3.1	11
245	Geosmin occurrence in riverine cyanobacterial mats: is it causing a significant health hazard?. Water Science and Technology, 2004, 49, 307-312.	2.5	11
246	Is the biological classification of benthic diatom communities concordant with ecotypes?. Hydrobiologia, 2012, 695, 43-55.	2.0	11
247	Does the severity of nonâ€flow periods influence ecosystem structure and function of temporary streams? A mesocosm study. Freshwater Biology, 2018, 63, 613-625.	2.4	11
248	Nostoc verrucosum (cyanobacteria) colonized by a chironomid larva in a mediterranean stream (Note) â€. Journal of Phycology, 2000, 36, 59-61.	2.3	10
249	Identifying reference benthic diatom communities in an agricultural watershed (Guadiana River, SW) Tj ETQq1	1 0.784314 2.0	4 rgBT /Overlo
250	Defining Multiple Stressor Implications. , 2019, , 1-22.		10
251	Bioconcentration and bioaccumulation of C60 fullerene and C60 epoxide in biofilms and freshwater snails (Radix sp.). Environmental Research, 2020, 180, 108715.	7.5	10
252	Does biofilm origin matter? Biofilm responses to nonâ€flow period in permanent and temporary streams. Freshwater Biology, 2020, 65, 514-523.	2.4	10

#	Article	IF	CITATIONS
253	Duration and frequency of nonâ€flow periods affect the abundance and diversity of stream meiofauna. Freshwater Biology, 2020, 65, 1906-1922.	2.4	10
254	Local and regional environmental factors drive the spatial distribution of phototrophic biofilm assemblages in Mediterranean streams. Hydrobiologia, 2020, 847, 2321-2336.	2.0	10
255	Framing biophysical and societal implications of multiple stressor effects on river networks. Science of the Total Environment, 2021, 753, 141973.	8.0	10
256	Historical legacies and contemporary processes shape beta diversity in Neotropical montane streams. Journal of Biogeography, 2021, 48, 101-117.	3.0	10
257	Nutrient and enzymatic adaptations of stream biofilms to changes in nitrogen and phosphorus supply. Aquatic Microbial Ecology, 2015, 75, 91-102.	1.8	10
258	Ecological factors that co-occur with geosmin production by benthic cyanobacteria. The case of the Llobregat River. Algological Studies, 2003, 109, 579-592.	0.1	9
259	Flood disturbance effects on benthic diatom assemblage structure in a semiarid river network. Journal of Phycology, 2015, 51, 133-143.	2.3	9
260	Using equilibrium temperature to assess thermal disturbances in rivers. Hydrological Processes, 2015, 29, 4350-4360.	2.6	9
261	Identifying regions vulnerable to habitat degradation under future irrigation scenarios. Environmental Research Letters, 2016, 11, 114025.	5.2	9
262	Modeling the sedimentary response of a large Pyrenean basin to global change. Journal of Soils and Sediments, 2017, 17, 2677-2690.	3.0	9
263	Exposure to single and binary mixtures of fullerenes and triclosan: Reproductive and behavioral effects in the freshwater snail Radix balthica. Environmental Research, 2019, 176, 108565.	7.5	9
264	Structural heterogeneity in cyanobacterial mats is associated with geosmin production in rivers. Phycologia, 2005, 44, 678-684.	1.4	8
265	The Physical Framework and Historic Human Influences in the Ebro River. Handbook of Environmental Chemistry, 2010, , 1-20.	0.4	8
266	Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin. Environmental Science and Pollution Research, 2012, 19, 934-945.	5.3	8
267	BALANCING CONSERVATION NEEDS WITH USES OF RIVER ECOSYSTEMS. Acta Biologica Colombiana, 2013, 19, 3.	0.4	8
268	Water abstraction affects abundance, size-structure and growth of two threatened cyprinid fishes. PLoS ONE, 2017, 12, e0175932.	2.5	8
269	Upstream refugia and dispersal ability may override benthic-community responses to high-Andean streams deforestation. Biodiversity and Conservation, 2019, 28, 1513-1531.	2.6	8
270	Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir. Scientific Reports, 2020, 10, 11288.	3.3	8

#	Article	IF	CITATIONS
271	Occurrence of regulated pollutants in populated Mediterranean basins: Ecotoxicological risk and effects on biological quality. Science of the Total Environment, 2020, 747, 141224.	8.0	8
272	Ecoregional Characteristics Drive the Distribution Patterns of Neotropical Stream Diatoms. Journal of Phycology, 2020, 56, 1053-1065.	2.3	8
273	Energy limitation or sensitive predators? Trophic and nonâ€trophic impacts of wastewater pollution on stream food webs. Ecology, 2022, 103, e03587.	3.2	8
274	Primary production of epilithic communities in undisturbed Mediterranean streams. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1994, 25, 1761-1764.	0.1	7
275	In-Stream Nutrient Flux and Retention in Relation to Land Use in the Llobregat River Basin. Handbook of Environmental Chemistry, 2012, , 69-92.	0.4	7
276	Epilithic biofilm metabolism during the high water flow period in an Andean neotropical stream. Hydrobiologia, 2014, 728, 41-50.	2.0	7
277	Ecophysiology of River Algae. , 2016, , 197-217.		7
278	Foreword: Global change and river ecosystems—implications for structure, function, and ecosystem services. Hydrobiologia, 2010, 657, 1-2.	2.0	5
279	Summary, Implications and Recommendations for the Occurrence and Effects of Multiple Stressors in River Ecosystems. , 2019, , 375-380.		5
280	Assessing the ecological integrity after nutrient inputs in streams: The relevance of the observation scale. Aquatic Ecosystem Health and Management, 2005, 8, 397-403.	0.6	4
281	Effects of Emerging Contaminants on Biodiversity, Community Structure, and Adaptation of River Biota. Handbook of Environmental Chemistry, 2015, , 79-119.	0.4	4
282	Biofilm pigments in temporary streams indicate duration and severity of drying. Limnology and Oceanography, 2021, 66, 3313-3326.	3.1	4
283	Securing Biodiversity, Functional Integrity, and Ecosystem Services in Drying River Networks (DRYvER). Research Ideas and Outcomes, 0, 7, .	1.0	4
284	Understanding effects of global change on water quantity and quality in river basins- The SCARCE Project. Environmental Science and Pollution Research, 2012, 19, 915-917.	5.3	3
285	Biochemical quality of basal resources in a forested stream: effects of nutrient enrichment. Aquatic Sciences, 2017, 79, 99-112.	1.5	3
286	Impacts of climate change on stream benthic diatoms—a nation-wide perspective of reference conditions. Hydrobiologia, 2022, 849, 1821-1837.	2.0	3
287	Algae in urban drinking waters in N.E. Spain. Journal of Applied Phycology, 1995, 7, 455-460.	2.8	2

The Role of Floodplains in Mitigating Diffuse Nitrate Pollution. , 0, , 253-268.

2

#	Article	IF	CITATIONS
289	Aquatic and Riparian Biodiversity in the Ebro Watershed: Prospects and Threats. Handbook of Environmental Chemistry, 2010, , 121-138.	0.4	2
290	Ecological Relevance of Key Toxicants in Aquatic Systems. Handbook of Environmental Chemistry, 2011, , 315-339.	0.4	2
291	Ecosystem Services in an Impacted Watershed. Handbook of Environmental Chemistry, 2012, , 347-368.	0.4	2
292	The Effect of Multiple Stressors on Biological Communities in the Llobregat. Handbook of Environmental Chemistry, 2012, , 93-116.	0.4	2
293	Foreword. Science of the Total Environment, 2014, 475, 157.	8.0	2
294	<i>In response</i> : The evidence—What actions are needed to effectively transfer from science to policy? An academic perspective. Environmental Toxicology and Chemistry, 2015, 34, 1208-1210.	4.3	2
295	Microbial Ecotoxicology: Looking to the Future. , 2017, , 339-352.		2
296	Diet quality and NSAIDs promote changes in formation of prostaglandins by an aquatic invertebrate. Chemosphere, 2020, 257, 126892.	8.2	2
297	Evaluating Ecological Integrity in Multistressed Rivers: From the Currently Used Biotic Indices to Newly Developed Approaches Using Biofilms and Invertebrates. Handbook of Environmental Chemistry, 2012, , 219-241.	0.4	2
298	Comparing fish assemblages and trophic ecology of permanent and intermittent reaches in a Mediterranean stream. , 2010, , 167-180.		2
299	INTEGRATING CHEMICAL AND BIOLOGICAL STATUS ASSESSMENT: ASSEMBLING LINES OF EVIDENCE FOR THE EVALUATION OF RIVER ECOSYSTEM RISK. Acta Biologica Colombiana, 2013, 19, 25.	0.4	2
300	Experiences and Lessons Learned on the Implementation of the Water Framework Directive in Selected European River Basins. Handbook of Environmental Chemistry, 2010, , 373-424.	0.4	1
301	Intercalibration of ecological quality in European Mediterranean rivers. Science of the Total Environment, 2014, 476-477, 743-744.	8.0	1
302	Application of Microcosm and Mesocosm Experiments to Pollutant Effects in Biofilms. Springer Protocols, 2015, , 135-151.	0.3	1
303	Collection and Processing of River Organisms and Water Column Organisms. Springer Protocols, 2015, , 219-228.	0.3	1
304	Nutrient stream attenuation is altered by the duration and frequency of flow intermittency. Ecohydrology, 0, , e2351.	2.4	1
305	Organic matter availability during pre- and post-drought periods in a Mediterranean stream. , 2010, , 217-232.		1
306	Variabilidad espacial y temporal de la calidad del agua en el rÃo Urola (Guipuzkoa). IngenierÃa Del Agua, 1998, 5, .	0.4	1

#	Article	IF	CITATIONS
307	Foreword: Global change and river ecosystems—implications for structure, function, and ecosystem services. , 2010, , 1-2.		1
308	Understanding effects of global change on river ecosystems: science to support policy in a changing world. , 2010, , 3-18.		1
309	Drivers of the diversity of diatoms in an oligotrophic Andean stream. , 2022, 58, 2.		1
310	Physiological Diversity and its Ecological Implications BY JOHN I. SPICER AND KEVIN J. GASTON x + 241 pp., 24.4 Ă— 17.3 Ă— 14.0 cm, ISBN 0 632 0545 2 paperback, GB £29.50, Oxford, UK: Blackwell Science, 1999. Environmental Conservation, 2001, 28, 86-94.	1.3	0
311	The Challenge : Assessing the effects of chemicals in freshwaters under multiple stress. Environmental Toxicology and Chemistry, 2015, 34, 1206-1206.	4.3	0
312	Ecosystem Responses to Emerging Contaminants: Fate and Effects of Pharmaceuticals in a Mediterranean River. Handbook of Environmental Chemistry, 2015, , 143-158.	0.4	0
313	An Introduction to the Geography of Multiple Stressors. , 2019, , 131-137.		0
314	Green and brown stream trophic food chains show specific responses to constant or hump-shaped	8.0	0

inputs of copper. Science of the Total Environment, 2022, 807, 150740. 314