List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/896642/publications.pdf Version: 2024-02-01

	145106	124990
4,453	33	64
citations	h-index	g-index
100	100	C 4 5 1
133	133	6451
docs citations	times ranked	citing authors
	4,453 citations 133 docs citations	4,453 33 citations h-index

ΙΓΙΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Prediction of solar cell materials via unsupervised literature learning. Journal of Physics Condensed Matter, 2022, 34, 095902.	0.7	5
2	Highly conjugated three-dimensional van der Waals heterostructure-based nanocomposite films for ultrahigh-responsive TEA gas sensors at room temperature. Journal of Materials Chemistry A, 2022, 10, 2995-3008.	5.2	20
3	Interactions between gas molecules and two-dimensional Ruddlesden–Popper halide perovskite. Journal of Applied Physics, 2022, 131, 025307.	1.1	2
4	Exploring solar cell materials with text-based machine learning. Scilight, 2022, 2022, 061106.	0.0	0
5	Unsupervised machine learning for solar cell materials from the literature. Journal of Applied Physics, 2022, 131, .	1.1	7
6	Photoelectrochemical Properties, Machine Learning, and Symbolic Regression for Molecularly Engineered Halide Perovskite Materials in Water. ACS Applied Materials & Interfaces, 2022, 14, 9933-9943.	4.0	12
7	Metal Halide-Based Adsorption and Substitution at Halide Perovskite Surfaces: Study of CuBr2/CH3NH3PbI3. Russian Journal of Physical Chemistry A, 2022, 96, 190-197.	0.1	1
8	Dual-functional iodine photoelectrode enabling high performance photo-assisted rechargeable lithium iodine batteries. Journal of Materials Chemistry A, 2022, 10, 7326-7332.	5.2	15
9	Interpretable Machine Learning for Investigating Photoelectrochemical Properties of Cosensitizer-Based CH ₃ NH ₃ PbI ₃ /TiO ₂ Films in Water. Journal of Physical Chemistry C, 2022, 126, 6482-6490.	1.5	9
10	Monomeric-to-pentameric aggregation of molecular Cs ₄ PbBr ₆ halide perovskite: a first-principles investigation. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 045002.	0.8	0
11	Machine learning and first-principles insights on molecularly modified CH3NH3PbI3 film in water. Applied Surface Science, 2022, 593, 153428.	3.1	4
12	Designing Two-Dimensional Halide Perovskites Based on High-Throughput Calculations and Machine Learning. ACS Applied Materials & Interfaces, 2022, 14, 21596-21604.	4.0	17
13	Dye-modified halide perovskite materials. Organic Electronics, 2022, , 106545.	1.4	2
14	Machine learning and symbolic regression for adsorption of atmospheric molecules on low-dimensional TiO2. Applied Surface Science, 2022, 597, 153728.	3.1	9
15	Molecular design for perovskite solar cells. International Journal of Energy Research, 2022, 46, 14740-14765.	2.2	3
16	Li-decorated porous hydrogen substituted graphyne: A new member of promising hydrogen storage medium. Applied Surface Science, 2021, 535, 147683.	3.1	36
17	Tuning electronic properties in the C3N/C3B lateral heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114497.	1.3	4
18	Theoretical investigation on interactions between lithium ions and two-dimensional halide perovskite for solar-rechargeable batteries. Applied Surface Science, 2021, 541, 148509.	3.1	14

#	Article	IF	CITATIONS
19	Optoelectronic and <scp>photoâ€charging</scp> properties of <scp> CH ₃ NH ₃ Pbl ₃ </scp> / <scp> LiFePO ₄ </scp> system. International Journal of Energy Research, 2021, 45, 6426-6435.	2.2	4
20	A first-principles investigation of heterostructures consisting of halide perovskite CsPbI3 and lead chalcogenide for optoelectronic applications. Journal of Structural Chemistry, 2021, 62, 722-728.	0.0	0
21	Effect of Yb ³⁺ concentration on upconversion luminescence and optical thermometry sensitivity of La ₂ MoO ₆ : Yb ³⁺ , Er ³⁺ phosphors. Applied Optics, 2021, 60, 1508.	0.9	5
22	CsPbl ₃ <i>NC</i> -Sensitized SnO ₂ /Multiple-Walled Carbon Nanotube Self-Assembled Nanomaterials with Highly Selective and Sensitive NH ₃ Sensing Performance at Room Temperature. ACS Applied Materials & Interfaces, 2021, 13, 14447-14457.	4.0	15
23	Stable and efficient QLEDs with crystallographic TiO2 as the electron transportation layer and improved carrier transportation by chlorination. Journal of Materials Science: Materials in Electronics, 2021, 32, 9795-9803.	1.1	0
24	Photoelectrochemical and first-principles investigation on perylene dye-based perovskite/TiO2 photoelectrode. Applied Surface Science, 2021, 543, 148792.	3.1	5
25	Adsorption and Diffusion of Halogen Gas Molecules on CH3NH3PbI3 Halide Perovskite Surfaces. Russian Journal of Physical Chemistry A, 2021, 95, 792-798.	0.1	0
26	Prediction of <scp>solarâ€chargeable</scp> battery materials: A <scp>textâ€mining</scp> and <scp>firstâ€principles</scp> investigation. International Journal of Energy Research, 2021, 45, 15521-15533.	2.2	8
27	Adsorption and diffusion of lithium ions on <scp>leadâ€free twoâ€dimensional</scp> halide perovskite surface toward energy storage applications. International Journal of Energy Research, 2021, 45, 16524-16537.	2.2	6
28	Interlayer Determined Photoluminescence Excitation Properties of Cs-Rich and Pb-Rich Cs ₄ PbBr ₆ Samples. Journal of Physical Chemistry C, 2021, 125, 16103-16109.	1.5	15
29	Machine learning and symbolic regression investigation on stability of MXene materials. Computational Materials Science, 2021, 196, 110578.	1.4	26
30	Cosensitization-based halide perovskite in aqueous solution: A photoelectrochemical and first-principles investigation. Materials Research Bulletin, 2021, 141, 111358.	2.7	6
31	Theoretical investigation on lithium battery material with improved light-harvesting performance. Optik, 2021, 241, 167265.	1.4	2
32	Modifying Optoelectronic Properties of Molecular Halide Perovskite Cs4PbBr6 via Organic Ligands: A First-Principles Investigation. Russian Journal of Physical Chemistry A, 2021, 95, 2586-2591.	0.1	0
33	Synergistic interactions between N3 dye and perovskite CH3NH3PbI3 for aqueous-based photoresponsiveness under visible light. Dyes and Pigments, 2020, 173, 107925.	2.0	9
34	Aggregation-enhanced adsorption and optoelectronic performance of metal-free organic dye on anatase (1 0 1) toward water-splitting purpose: A first-principles investigation. Applied Surface Science, 2020, 502, 144139.	3.1	11
35	Recent advances in heterometallic polyoxotitanium clusters. Coordination Chemistry Reviews, 2020, 404, 213099.	9.5	56
36	Dimensional tailoring of halide perovskite: A case study on Cs4PbBr6/CsPbBr3 hybrid with molecular halide perovskite. Solar Energy Materials and Solar Cells, 2020, 204, 110237.	3.0	17

#	Article	IF	CITATIONS
37	Atomistic understanding on molecular halide perovskite/organic/TiO2 interface with bifunctional interfacial modifier: A case study on halogen bond and carboxylic acid group. Applied Surface Science, 2020, 502, 144274.	3.1	11
38	Dye-sensitization enhances photoelectrochemical performance of halide perovskite CH3NH3PbI3 photoanode in aqueous solution. Dyes and Pigments, 2020, 173, 108006.	2.0	7
39	Polyoxometalates: Tailoring metal oxides in molecular dimension toward energy applications. International Journal of Energy Research, 2020, 44, 3316-3346.	2.2	41
40	Pyridyl anchor-assisted photoresponsiveness of 4-(4-diethylaminophenylazo)pyridine on TiO2 surface. Journal of Molecular Structure, 2020, 1205, 127596.	1.8	3
41	First principles investigation on long alkyl chain-based surface anchoring for self-assembled bilayer. Applied Surface Science, 2020, 506, 144692.	3.1	2
42	Facilely fabricating FeSe nanoparticles embedded in N-doped carbon towards promoting sodium storage behaviors. Journal of Power Sources, 2020, 449, 227517.	4.0	36
43	Machine learning for halide perovskite materials. Nano Energy, 2020, 78, 105380.	8.2	65
44	Halide Perovskite Materials for Energy Storage Applications. Advanced Functional Materials, 2020, 30, 2003653.	7.8	63
45	Photoelectrochemical and first-principles investigation on halide perovskite/TiO2 film improved by dicyano dye. Optical Materials, 2020, 109, 110350.	1.7	5
46	DYE-CATALYST INTERACTIONS IN A WATER-SPLITTING SYSTEM: A FIRST-PRINCIPLES INVESTIGATION OF INTERFACIAL STRUCTURES BASED ON COUMARIN343/[FeFe](mcbdt)(CO)6/NiO. Journal of Structural Chemistry, 2020, 61, 1038-1044.	0.3	0
47	Molecular engineer halide perovskite/lead chalcogenide heterostructure toward optoelectronic applications: A case study on CsPbBr3/PbS interface. Applied Surface Science, 2020, 534, 147599.	3.1	4
48	Ab-Initio Investigation on Dye Conformer Structures and the Interplay between Conformation and Multilayer Aggregation on TiO2 toward Solar Cell Application. Russian Journal of Physical Chemistry A, 2020, 94, 2282-2290.	0.1	0
49	Dendritic PAMAM polymers for strong perovskite intergranular interaction enhancing power conversion efficiency and stability of perovskite solar cells. Electrochimica Acta, 2020, 349, 136387.	2.6	19
50	ZnO Nanosheets Modified with Graphene Quantum Dots and SnO ₂ Quantum Nanoparticles for Room-Temperature H ₂ S Sensing. ACS Applied Nano Materials, 2020, 3, 5220-5230.	2.4	53
51	Dye-sensitized halide perovskite: A case study on calcein dye. Dyes and Pigments, 2020, 181, 108608.	2.0	8
52	Investigation of germanium selenide electrodes for the integrated photoâ€rechargeable battery. International Journal of Energy Research, 2020, 44, 6015-6022.	2.2	14
53	Halide perovskite nanotube toward energy applications: A firstâ€principles investigation. International Journal of Energy Research, 2020, 44, 5412-5424.	2.2	5
54	Synthesis and high ammonia gas sensitivity of (CH3NH3)PbBr3-xlx perovskite thin film at room temperature. Sensors and Actuators B: Chemical, 2020, 309, 127786.	4.0	45

#	Article	IF	CITATIONS
55	Aggregation of molecular halide perovskite Cs4PbX6: A first-principles investigation. Chemical Physics Letters, 2019, 732, 136653.	1.2	7
56	Understanding Molecular Adsorption on CuSCN Surfaces toward Perovskite Solar Cell Applications. Journal of Physical Chemistry C, 2019, 123, 26785-26793.	1.5	13
57	Engineering Naâ^'Moâ^'O/Graphene Oxide Composites with Enhanced Electrochemical Performance for Lithium Ion Batteries. ChemistryOpen, 2019, 8, 1225-1229.	0.9	2
58	Structures and Properties of Higher-Degree Aggregates of Methylammonium lodide toward Halide Perovskite Solar Cells. Russian Journal of Physical Chemistry A, 2019, 93, 2250-2255.	0.1	1
59	First Principles Study on Structurally Resolved Titanium Dioxide Nanoparticles Functionalized by Organic Ligands. Journal of Structural Chemistry, 2019, 60, 671-677.	0.3	3
60	Understanding substitution effects on dye structures and optoelectronic properties of molecular halide perovskite Cs4MX6 (M=Pb, Sn, Ge; X= Br, I, Cl). Journal of Molecular Graphics and Modelling, 2019, 91, 172-179.	1.3	7
61	Controlled synthesis of zero-dimensional phase-pure Cs4PbBr6 perovskites crystals with high photoluminescence quantum yield. Journal of Alloys and Compounds, 2019, 797, 1151-1156.	2.8	20
62	Binding Mode of Malonic Acid on the IrO2 Surface. Journal of Structural Chemistry, 2019, 60, 7-12.	0.3	2
63	Molecular engineering lithium sulfur battery cathode based on small organic molecules: An ab-initio investigation. Applied Surface Science, 2019, 484, 1184-1190.	3.1	12
64	Data mining new energy materials from structure databases. Renewable and Sustainable Energy Reviews, 2019, 107, 554-567.	8.2	38
65	Rationalizing the control of interfacial charge transfer directions in halide perovskite materials via additives: A first principles investigation. Applied Surface Science, 2019, 481, 1178-1184.	3.1	13
66	Understanding structures and properties of phosphorene/perovskite heterojunction toward perovskite solar cell applications. Journal of Molecular Graphics and Modelling, 2019, 89, 96-101.	1.3	5
67	Understanding adsorption of nucleobases on CH3NH3PbI3 surfaces toward biological applications of halide perovskite materials. Applied Surface Science, 2019, 483, 1052-1057.	3.1	6
68	Effect of novel anchoring groups on the electronic and optical properties of water-splitting metal-free dye molecules: A first-principles investigation. Chemical Physics, 2019, 522, 84-90.	0.9	4
69	Structures and Properties of Methylammonium Iodide Precursors of Halide Perovskites and Implications for Solar Cells: an Ab-Initio Investigation. Russian Journal of Physical Chemistry A, 2019, 93, 2694-2698.	0.1	1
70	Surfacing amorphous Ni–B nanoflakes on NiCo ₂ O ₄ nanospheres as multifunctional bridges for promoting lithium storage behaviors. Nanoscale, 2019, 11, 22550-22558.	2.8	20
71	Intermolecular Interactions of Hybrid Organic Dyes Based on Coumarin 343 for Optoelectronic Applications. Russian Journal of Physical Chemistry A, 2019, 93, 2542-2549.	0.1	0
72	Hierarchical Porous Carbon Derived from Peanut Hull for Polysulfide Confinement in Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1800898.	1.8	11

#	Article	IF	CITATIONS
73	Experimental and first principles investigations on the photoisomerization and electrochemical properties of chlorophosphonazo III. Journal of Molecular Structure, 2019, 1180, 151-157.	1.8	2
74	Understanding photoresponsive catechol-based polyoxotitanate molecules: A combined experimental and first principles investigation. Chemical Physics Letters, 2019, 715, 217-221.	1.2	1
75	Understanding Interactions between Lead Iodide Perovskite Surfaces and Lithium Polysulfide toward New-Generation Integrated Solar-Powered Lithium Battery: An ab Initio Investigation. Journal of Physical Chemistry C, 2019, 123, 82-90.	1.5	10
76	Controlling directions of electron flow by light: A case study on TiO2 film with azo dyes. Dyes and Pigments, 2019, 161, 277-282.	2.0	5
77	Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation. Applied Surface Science, 2018, 443, 176-183.	3.1	43
78	On the growth of CH 3 NH 3 PbI 3-x Cl x single crystal and characterization. Physica B: Condensed Matter, 2018, 537, 7-11.	1.3	7
79	Growth of mixed-halide perovskite single crystals. CrystEngComm, 2018, 20, 1635-1643.	1.3	35
80	Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chemical Society Reviews, 2018, 47, 404-421.	18.7	272
81	Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 175, 1-19.	3.0	66
82	Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups. Journal of Molecular Structure, 2018, 1155, 389-393.	1.8	5
83	Theoretical investigations on crystal crosslinking in perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 234-241.	2.7	14
84	General Approach to Prepare 0.33Li ₂ MnO ₃ · 0.67LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Hollow Microspheres for High Performance Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2018, 18, 4127-4134.	0.9	2
85	Recent Progress and Challenges of Microâ€∤Nanostructured Transition Metal Carbonate Anodes for Lithium Ion Batteries. European Journal of Inorganic Chemistry, 2018, 2018, 4508-4521.	1.0	23
86	Li-decorated carbon ene–yne as a potential high-capacity hydrogen storage medium. Physical Chemistry Chemical Physics, 2018, 20, 24011-24018.	1.3	7
87	Doping bismuth oxyhalides with Indium: A DFT calculations on tuning electronic and optical properties. Chemical Physics Letters, 2018, 705, 31-37.	1.2	20
88	Theoretical design of blue phosphorene/arsenene lateral heterostructures with superior electronic properties. Journal Physics D: Applied Physics, 2018, 51, 255304.	1.3	28
89	Observation of Interpenetration Isomerism in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 6763-6766.	6.6	144
90	Understanding interactions between halide perovskite surfaces and atmospheric/VOC gas molecules: an ab initio investigation. Journal Physics D: Applied Physics, 2018, 51, 315302.	1.3	23

#	Article	IF	CITATIONS
91	Theoretical Prediction of Blue Phosphorene/Borophene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 18294-18303.	1.5	59
92	Double-edged sword effects of cation rotation and additive passivation on perovskite solar cell performance: an ab initio investigation. Solar Energy Materials and Solar Cells, 2018, 186, 349-355.	3.0	29
93	Engineering Zn _{0.33} Co _{0.67} S Hollow Microspheres with Enhanced Electrochemical Performance for Lithium and Sodium Ion Batteries. European Journal of Inorganic Chemistry, 2018, 2018, 3036-3040.	1.0	16
94	Effect of Ni content in Ni Mn1-CO3 (xÂ= 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries. Electrochimica Acta, 2018, 276, 333-342.	2.6	28
95	First Principles Study on the Interfacial Structure and Electronic Properties of a Metal-Free Organic Dye/TiO2 Photoanode for Water Oxidation. Russian Journal of Physical Chemistry A, 2018, 92, 1631-1635.	0.1	2
96	Polyoxometalate-Based Metal–Organic Framework on Carbon Cloth with a Hot-Pressing Method for High-Performance Lithium-Ion Batteries. Inorganic Chemistry, 2018, 57, 11726-11731.	1.9	48
97	Synthesis and photocatalytic H2 evolution properties of four titanium-oxo-clusters based on a cyclohex-3-ene-1-carboxylate ligand. Dalton Transactions, 2017, 46, 10630-10634.	1.6	21
98	Terahertz investigations on photoisomerisable compounds. Molecular Physics, 2017, 115, 2486-2494.	0.8	2
99	Assembly of titanium-oxo cations with copper-halide anions to form supersalt-type cluster-based materials. Chemical Communications, 2017, 53, 3949-3951.	2.2	39
100	Molecular Engineering of the Lead Iodide Perovskite Surface: Case Study on Molecules with Pyridyl Groups. Journal of Physical Chemistry C, 2017, 121, 24612-24617.	1.5	20
101	Dye aggregation in dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 19541-19559.	5.2	240
102	Growth and Properties of CH ₃ NH ₃ PbI ₃ Single Crystal. Crystal Research and Technology, 2017, 52, 1700171.	0.6	10
103	Construction of S@TiO ₂ @râ€GO Composites for Highâ€Performance Lithium–Sulfur Batteries. European Journal of Inorganic Chemistry, 2017, 2017, 3248-3252.	1.0	12
104	Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO ₂ Anchoring Characteristics for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25952-25961.	4.0	20
105	Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angewandte Chemie, 2016, 128, 5246-5251.	1.6	34
106	First-Principles Study of Molecular Adsorption on Lead Iodide Perovskite Surface: A Case Study of Halogen Bond Passivation for Solar Cell Application. Journal of Physical Chemistry C, 2016, 120, 23536-23541.	1.5	37
107	Azole Functionalized Polyoxo-Titanium Clusters with Sunlight-Driven Dye Degradation Applications: Synthesis, Structure, and Photocatalytic Studies. Inorganic Chemistry, 2016, 55, 10294-10301.	1.9	47
108	The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation. Physical Chemistry Chemical Physics, 2016, 18, 23174-23183.	1.3	89

#	Article	IF	CITATIONS
	General synthesis of xLi ₂ MnO ₃ ·(1 â^') Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50	752 Td (x)LiNi _{1/}
109	microspheres towards enhancing the performance of rechargeable lithium ion batteries. Journal of	5.2	38
110	Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis. Scientific Reports, 2016, 6, 35893.	1.6	30
111	A 3.6 nm Ti ₅₂ –Oxo Nanocluster with Precise Atomic Structure. Journal of the American Chemical Society, 2016, 138, 7480-7483.	6.6	193
112	Can nitro groups really anchor onto TiO ₂ ? Case study of dye-to-TiO ₂ adsorption using azo dyes with NO ₂ substituents. Physical Chemistry Chemical Physics, 2016, 18, 19062-19069.	1.3	28
113	Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angewandte Chemie - International Edition, 2016, 55, 5160-5165.	7.2	181
114	Can we deconvolute electron density changes from the dominant influence of the atomic rearrangement on molecular excitation in time-resolved diffraction studies?. Physica Scripta, 2016, 91, 023003.	1.2	5
115	Fullerene-like Polyoxotitanium Cage with High Solution Stability. Journal of the American Chemical Society, 2016, 138, 2556-2559.	6.6	183
116	How Does Substitutional Doping Affect Visible Light Absorption in a Series of Homodisperse Ti ₁₁ Polyoxotitanate Nanoparticles?. Chemistry - A European Journal, 2015, 21, 11538-11544.	1.7	39
117	A cobalt-based polyoxometalate catalyst for efficient visible-light-driven H2 evolution from water splitting. Catalysis Communications, 2015, 64, 44-47.	1.6	21
118	Anchoring Groups for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 3427-3455.	4.0	654
119	A new heterogeneous photocatalyst based on Wells–Dawson polyoxometalate and nickel coordination compounds: synthesis, structure and property. RSC Advances, 2015, 5, 23556-23562.	1.7	45
120	TiO ₂ -Assisted Photoisomerization of Azo Dyes Using Self-Assembled Monolayers: Case Study on <i>para</i> -Methyl Red Towards Solar-Cell Applications. ACS Applied Materials & Interfaces, 2014, 6, 3742-3749.	4.0	43
121	Adsorption Properties of <i>p</i> -Methyl Red Monomeric-to-Pentameric Dye Aggregates on Anatase (101) Titania Surfaces: First-Principles Calculations of Dye/TiO ₂ Photoanode Interfaces for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 15760-15766.	4.0	42
122	Variation in Optoelectronic Properties of Azo Dye-Sensitized TiO ₂ Semiconductor Interfaces with Different Adsorption Anchors: Carboxylate, Sulfonate, Hydroxyl and Pyridyl Groups. ACS Applied Materials & Interfaces, 2014, 6, 7535-7546.	4.0	95
123	Dye Aggregation and Complex Formation Effects in 7-(Diethylamino)-coumarin-3-carboxylic Acid. Journal of Physical Chemistry C, 2014, 118, 13042-13051.	1.5	29
124	Relating Electron Donor and Carboxylic Acid Anchoring Substitution Effects in Azo Dyes to Dye-Sensitized Solar Cell Performance. ACS Sustainable Chemistry and Engineering, 2013, 1, 1440-1452.	3.2	83
125	Tuning Solvatochromism of Azo Dyes with Intramolecular Hydrogen Bonding in Solution and on Titanium Dioxide Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 26316-26323.	1.5	35
126	Embedding Sulfur in MOFâ€Đerived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2013, 19, 10804-10808.	1.7	355

#	Article	IF	CITATIONS
127	Photo-electrochemical Lithium Insertion Characteristics of Carbon Nanotubes Modified with SrTiO3 Photocatalyst. Chinese Journal of Chemical Physics, 2006, 19, 428-432.	0.6	1
128	Bond length alternation- and data mining-assisted exploration of molecular adsorbates with Ï€-conjugation and amines for two-dimensional halide perovskite surface. Structural Chemistry, 0, , 1.	1.0	1