Fanjun Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8966139/publications.pdf Version: 2024-02-01

FANILIN KONC

#	Article	IF	CITATIONS
1	Cu doping modified FeCO3 microspheres with enhanced Li+ storage performance. Materials Letters, 2022, 318, 132185.	1.3	1
2	Core–shell structured SnSe@C microrod for Na-ion battery anode. Journal of Energy Chemistry, 2021, 55, 256-264.	7.1	61
3	MnSe nanoparticles encapsulated into N-doped carbon fibers with a binder-free and free-standing structure for lithium ion batteries. Ceramics International, 2021, 47, 1429-1438.	2.3	27
4	Electrochemical and electrocatalytic performance of FeSe2 nanoparticles improved by selenium matrix. Materials Letters, 2021, 284, 128947.	1.3	6
5	One dimensional SbO ₂ /Sb ₂ O ₃ @NC microrod as anode for lithiumâ€ion and sodiumâ€ion batteries. Nano Select, 2021, 2, 425-432.	1.9	9
6	A Fe ₂ O ₃ –Fe ₃ C heterostructure encapsulated into a carbon matrix for the anode of lithium-ion batteries. Chemical Communications, 2021, 57, 8818-8821.	2.2	13
7	The lithium ion storage performance of ZnSe particles with stable electrochemical reaction interfaces improved by carbon coating. Journal of Physics and Chemistry of Solids, 2021, 152, 109987.	1.9	7
8	MoO2 nanosheets embedded into carbon nanofibers with a self-standing structure for lithium ion and sodium ion batteries. Ceramics International, 2021, 47, 26839-26846.	2.3	16
9	MOF-derived ultrasmall CoSe ₂ nanoparticles encapsulated by an N-doped carbon matrix and their superior lithium/sodium storage properties. Chemical Communications, 2020, 56, 9218-9221.	2.2	24
10	Synergistic Effect on the Improved Electrochemical Performance in the Case of Fe _{1–<i>x</i>} Cd _{<i>x</i>} CO ₃ . Journal of Physical Chemistry C, 2019, 123, 19333-19339.	1.5	5
11	An Organic/Inorganic Synergistic Electrolysis for Overcharge Protection of Electric Vehicle Batteries. Industrial & Engineering Chemistry Research, 2019, 58, 1787-1793.	1.8	4
12	CeO2 nanoparticles embedded into one dimensional N doped carbon matrix as a high performance anode for lithium ion batteries. Journal of Physics and Chemistry of Solids, 2019, 134, 187-192.	1.9	16
13	Metalâ€Organicâ€Frameworkâ€Derived FeSe ₂ @Carbon Embedded into Nitrogenâ€Doped Graphene Sheets with Binary Conductive Networks for Rechargeable Batteries. ChemElectroChem, 2019, 6, 2805-2811.	2 1.7	17
14	Bimetal phosphide Ni1.4Co0.6P nanoparticle/carbon@ nitrogen-doped graphene network as high-performance anode materials for lithium-ion batteries. Applied Surface Science, 2019, 485, 413-422.	3.1	17
15	Hierarchical Ni(HCO ₃) ₂ Nanosheets Anchored on Carbon Nanofibers as Binderâ€Free Anodes for Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1900094.	1.8	10
16	Lithium storage mechanisms of CdSe nanoparticles with carbon modification for advanced lithium ion batteries. Chemical Communications, 2019, 55, 2996-2999.	2.2	23
17	Facile synthesis of CdCO3 cubic particles/graphene composite with enhanced electrochemical performance for lithium-ion batteries. Materials Letters, 2019, 236, 672-675.	1.3	9
18	Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries. Journal of Materials Science, 2019, 54, 4225-4235.	1.7	74

Fanjun Kong

#	Article	IF	CITATIONS
19	Graphite modified AlNbO 4 with enhanced lithium — Ion storage behaviors and its electrochemical mechanism. Materials Research Bulletin, 2018, 97, 405-410.	2.7	14
20	Multiwalled carbon nanotube-modified Nb2O5 with enhanced electrochemical performance for lithium-ion batteries. Ceramics International, 2018, 44, 23226-23231.	2.3	23
21	Facile synthesis of MTaO4 (M = Al, Cr and Fe) metal oxides and their application as anodes for lithium-ion batteries. Ceramics International, 2018, 44, 8827-8831.	2.3	7
22	Hierarchical Co2P microspheres assembled from nanorods grown on reduced graphene oxide as anode material for Lithium-ion batteries. Applied Surface Science, 2018, 459, 665-671.	3.1	25
23	Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. Journal of Alloys and Compounds, 2017, 705, 413-419.	2.8	79
24	Co-precipitation synthesis and electrochemical properties of CrNbO4 anode materials for lithium-ion batteries. Materials Letters, 2017, 196, 335-338.	1.3	9
25	Preparation and characterization of nano-sized FeTaO 4 /graphite for lithium-ion batteries. Solid State Ionics, 2017, 313, 45-51.	1.3	5
26	The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries. Electrochimica Acta, 2016, 203, 206-212.	2.6	24