Andrew J Holland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8966119/publications.pdf

Version: 2024-02-01

45 papers

4,097 citations

172386 29 h-index 243529 44 g-index

49 all docs 49 docs citations

times ranked

49

4686 citing authors

#	Article	IF	CITATIONS
1	Upstream open reading frames control PLK4 translation and centriole duplication in primordial germ cells. Genes and Development, 2022, 36, 718-736.	2.7	8
2	Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis. Genes and Development, 2021, 35, 1079-1092.	2.7	35
3	ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO Journal, 2021, 40, e105106.	3 . 5	35
4	Centrosome defects cause microcephaly by activating the 53BP1â€USP28â€TP53 mitotic surveillance pathway. EMBO Journal, 2021, 40, e106118.	3 . 5	39
5	TRIM37: a critical orchestrator of centrosome function. Cell Cycle, 2021, 20, 2443-2451.	1.3	2
6	Time is of the essence: the molecular mechanisms of primary microcephaly. Genes and Development, 2021, 35, 1551-1578.	2.7	34
7	Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature, 2020, 585, 447-452.	13.7	63
8	Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nature Structural and Molecular Biology, 2020, 27, 168-178.	3.6	74
9	WBP11 is required for splicing the TUBGCP6 pre-mRNA to promote centriole duplication. Journal of Cell Biology, 2020, 219, .	2.3	11
10	Keeping track of time: The fundamentals of cellular clocks. Journal of Cell Biology, 2020, 219, .	2.3	14
11	YAP and TAZ regulate cell volume. Journal of Cell Biology, 2019, 218, 3472-3488.	2.3	39
12	SFI1 promotes centriole duplication by recruiting USP9X to stabilize the microcephaly protein STIL. Journal of Cell Biology, 2019, 218, 2185-2197.	2.3	18
13	The Emerging Link between Centrosome Aberrations and Metastasis. Developmental Cell, 2019, 49, 325-331.	3.1	40
14	High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nature Communications, 2019, 10, 993.	5.8	104
15	Massive centriole production can occur in the absence of deuterosomes in multiciliated cells. Nature Cell Biology, 2019, 21, 1544-1552.	4.6	43
16	Mechanism and Regulation of Centriole and Cilium Biogenesis. Annual Review of Biochemistry, 2019, 88, 691-724.	5.0	174
17	PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. ELife, 2019, 8, .	2.8	55
18	Pushed out of a tough crowd: centrosome aberrations promote invasiveness. EMBO Journal, 2018, 37, .	3.5	O

#	Article	IF	CITATIONS
19	Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 2018, 19, 297-312.	16.1	367
20	Global Effects of DDX3 Inhibition on Cell Cycle Regulation Identified by a Combined Phosphoproteomics and Single Cell Tracking Approach. Translational Oncology, 2018, 11, 755-763.	1.7	21
21	Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network. IScience, 2018, 8, 222-235.	1.9	41
22	The impact of mitotic errors on cell proliferation and tumorigenesis. Genes and Development, 2018, 32, 620-638.	2.7	177
23	Applying the auxin-inducible degradation system for rapid protein depletion in mammalian cells. Methods in Cell Biology, 2018, 144, 107-135.	0.5	22
24	Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals. Developmental Cell, 2017, 40, 313-322.e5.	3.1	291
25	A New Mode of Mitotic Surveillance. Trends in Cell Biology, 2017, 27, 314-321.	3.6	58
26	Cell cycle proteins moonlight in multiciliogenesis. Science, 2017, 358, 716-718.	6.0	4
27	CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis. Current Biology, 2016, 26, 1127-1137.	1.8	68
28	A USP28–53BP1–p53–p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. Journal of Cell Biology, 2016, 214, 143-153.	2.3	179
29	Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6311-20.	3.3	46
30	p53 protects against genome instability following centriole duplication failure. Journal of Cell Biology, 2015, 210, 63-77.	2.3	127
31	Generation of a conditional analog-sensitive kinase in human cells using CRISPR/Cas9-mediated genome engineering. Methods in Cell Biology, 2015, 129, 19-36.	0.5	26
32	Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. Journal of Cell Biology, 2015, 209, 863-878.	2.3	179
33	Chronic centrosome amplification without tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6321-30.	3.3	70
34	Polo-like Kinase 4 Inhibition: A Strategy for Cancer Therapy?. Cancer Cell, 2014, 26, 151-153.	7.7	40
35	Polo-like Kinase 4 Shapes Up. Structure, 2014, 22, 1071-1073.	1.6	7
36	Catalytic Assembly of the Mitotic Checkpoint Inhibitor BubR1-Cdc20 by a Mad2-Induced Functional Switch in Cdc20. Molecular Cell, 2013, 51, 92-104.	4.5	88

#	Article	IF	CITATIONS
37	Polo-like kinase 4 controls centriole duplication but does not directly regulate cytokinesis. Molecular Biology of the Cell, 2012, 23, 1838-1845.	0.9	35
38	The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes and Development, 2012, 26, 2684-2689.	2.7	132
39	Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3350-7.	3.3	277
40	Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nature Medicine, 2012, 18, 1630-1638.	15.2	231
41	Losing balance: the origin and impact of aneuploidy in cancer. EMBO Reports, 2012, 13, 501-514.	2.0	239
42	The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation. Journal of Clinical Investigation, 2012, 122, 4325-4328.	3.9	32
43	Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. Journal of Cell Biology, 2010, 188, 191-198.	2.3	251
44	Cep152 interacts with Plk4 and is required for centriole duplication. Journal of Cell Biology, 2010, 191, 721-729.	2.3	255
45	Centriole duplication. Cell Cycle, 2010, 9, 2803-2808.	1.3	43