
Antigoni Alexandrou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8965691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano, 2011, 5, 8488-8505.	7.3	522
2	Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood, 2015, 125, 3805-3814.	0.6	217
3	Rails and anchors: guiding and trapping droplet microreactors in two dimensions. Lab on A Chip, 2011, 11, 813-821.	3.1	190
4	Functionalized Fluorescent Oxide Nanoparticles:  Artificial Toxins for Sodium Channel Targeting and Imaging at the Single-Molecule Level. Nano Letters, 2004, 4, 2079-2083.	4.5	181
5	Fourier-transform coherent anti-Stokes Raman scattering microscopy. Optics Letters, 2006, 31, 480.	1.7	124
6	Multifunctional Rare-Earth Vanadate Nanoparticles: Luminescent Labels, Oxidant Sensors, and MRI Contrast Agents. ACS Nano, 2014, 8, 11126-11137.	7.3	116
7	High Up-Conversion Efficiency of YVO ₄ :Yb,Er Nanoparticles in Water down to the Single-Particle Level. Journal of Physical Chemistry C, 2010, 114, 22449-22454.	1.5	113
8	Electric-field effects on exciton lifetimes in symmetric coupled GaAs/Al0.3Ga0.7As double quantum wells. Physical Review B, 1990, 42, 9225-9228.	1.1	94
9	Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells. Nature Nanotechnology, 2009, 4, 581-585.	15.6	90
10	Counting the Number of Proteins Coupled to Single Nanoparticles. Journal of the American Chemical Society, 2007, 129, 12592-12593.	6.6	87
11	Coherent vibrational climbing in carboxyhemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13216-13220.	3.3	86
12	Ultrafast Electron Redistribution through Coulomb Scattering in Undoped GaAs: Experiment and Theory. Physical Review Letters, 1996, 77, 5429-5432.	2.9	81
13	A Bayesian Inference Scheme to Extract Diffusivity and Potential Fields from Confined Single-Molecule Trajectories. Biophysical Journal, 2012, 102, 2288-2298.	0.2	74
14	New Insights into Size Effects in Luminescent Oxide Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 18699-18706.	1.5	72
15	Organic Functionalization of Luminescent Oxide Nanoparticles toward Their Application As Biological Probes. Langmuir, 2008, 24, 11018-11026.	1.6	70
16	Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control. Optics Letters, 2005, 30, 911.	1.7	63
17	Evidence of polariton stimulation in semiconductor microcavities. Physical Review B, 2000, 62, R2279-R2282.	1.1	61
18	The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nature Communications, 2019, 10, 3303.	5.8	52

#	Article	IF	CITATIONS
19	Doubly and triply resonant raman scattering by LO phonons in GaAs/AlAs superlattices. Physical Review B, 1988, 38, 2196-2199.	1.1	50
20	Sickling of red blood cells through rapid oxygen exchange in microfluidic drops. Lab on A Chip, 2010, 10, 2505.	3.1	48
21	Tamm states in superlattices. Surface Science, 1992, 267, 161-165.	0.8	47
22	Emission properties and applications of nanostructured luminescent oxide nanoparticles. Progress in Solid State Chemistry, 2005, 33, 99-106.	3.9	43
23	Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions. Journal of Applied Physics, 2000, 88, 6026-6031.	1.1	41
24	Direct observation of electron relaxation in intrinsic GaAs using femtosecond pump-probe spectroscopy. Physical Review B, 1995, 52, 4654-4657.	1.1	39
25	Single Lanthanide-doped Oxide Nanoparticles as Donors in Fluorescence Resonance Energy Transfer Experiments. Journal of Physical Chemistry B, 2006, 110, 19264-19270.	1.2	39
26	Direct observation of ligand transfer and bond formation in cytochrome <i>c</i> oxidase by using mid-infrared chirped-pulse upconversion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15705-15710.	3.3	36
27	Infrared spectroscopy of self-organized InAs nanostructures grown on InAlAs/InP(001) for infrared photodetection applications. Infrared Physics and Technology, 2001, 42, 443-451.	1.3	33
28	Interplay between Landau and Stark quantizations in GaAs/Ga0.65Al0.35As superlattices. Physical Review B, 1991, 44, 1934-1937.	1.1	30
29	Observing the Confinement Potential of Bacterial Pore-Forming Toxin Receptors Inside Rafts with Nonblinking Eu3+-Doped Oxide Nanoparticles. Biophysical Journal, 2012, 102, 2299-2308.	0.2	30
30	Quantifying Biomolecule Diffusivity Using an Optimal Bayesian Method. Biophysical Journal, 2010, 98, 596-605.	0.2	24
31	Probing Membrane Protein Interactions with Their Lipid Raft Environment Using Single-Molecule Tracking and Bayesian Inference Analysis. PLoS ONE, 2013, 8, e53073.	1.1	24
32	Fast quantitative ROS detection based on dual-color single rare-earth nanoparticle imaging reveals signaling pathway kinetics in living cells. Nanoscale, 2017, 9, 656-665.	2.8	24
33	Triply resonant second-order Raman scattering in GaAs. Solid State Communications, 1987, 64, 1029-1034.	0.9	20
34	Luminescent oxide nanoparticles with enhanced optical properties. Journal of Luminescence, 2009, 129, 1706-1710.	1.5	20
35	Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs. Applied Physics Letters, 2002, 80, 2505-2507.	1.5	19
36	Suppression of perturbed free-induction decay and noise in experimental ultrafast pump-probe data. Optics Letters, 2009, 34, 3226.	1.7	18

ANTIGONI ALEXANDROU

#	Article	IF	CITATIONS
37	Ultra-wide range field-dependent measurements of the relaxivity of Gd1â^'xEuxVO4 nanoparticle contrast agents using a mechanical sample-shuttling relaxometer. Scientific Reports, 2017, 7, 44770.	1.6	18
38	Optical in situ size determination of single lanthanide-ion doped oxide nanoparticles. Applied Physics Letters, 2006, 89, 253103.	1.5	15
39	Exciton effects in stress-induced doubly resonant Raman scattering: GaAs. Physical Review B, 1988, 38, 10744-10748.	1.1	14
40	Nonequilibrium plasmons in optically excited semiconductors. Physical Review B, 2000, 62, 15724-15734.	1.1	14
41	Theoretical model of stress-induced triply resonant Raman scattering. Physical Review B, 1989, 40, 1603-1610.	1.1	13
42	Intensity-invariant subpicosecond absorption saturation in heavy-ion irradiated bulk GaAs. Applied Physics Letters, 1998, 73, 3715-3717.	1.5	13
43	Receptor Displacement in the Cell Membrane by Hydrodynamic Force Amplification through Nanoparticles. Biophysical Journal, 2013, 105, 116-126.	0.2	13
44	Regulation of the ROS Response Dynamics and Organization to PDGF Motile Stimuli Revealed by Single Nanoparticle Imaging. Chemistry and Biology, 2014, 21, 647-656.	6.2	13
45	Doubly and triply resonant Raman scattering via electron–two-phonon and impurity-induced Fröhlich interactions in uniaxially stressed GaAs. Physical Review B, 1989, 40, 1013-1022.	1.1	12
46	Calibrating optical tweezers with Bayesian inference. Optics Express, 2013, 21, 31578.	1.7	12
47	Sub-picosecond wideband efficient saturable absorber created by high energy (200 MeV) irradiation of Au+ ions into bulk GaAs. Electronics Letters, 1998, 34, 818.	0.5	11
48	Competition between magnetic-field- and electric-field-induced localizations in GaAs/Ga0.65Al0.35As superlattices. Physical Review B, 1991, 44, 13124-13127.	1.1	9
49	Ultrafast in-well screening of the piezoelectric field in (111) quantum wells. Physical Review B, 1996, 53, R16172-R16175.	1.1	9
50	Single YVO_4:Eu nanoparticle emission spectra using direct Eu^3+ ion excitation with a sum-frequency 465-nm solid-state laser. Optics Express, 2014, 22, 20542.	1.7	9
51	Hole delocalization in CdTe/Cd1â^'xZnxTe quantum wells. Physical Review B, 1994, 50, 2727-2730.	1.1	8
52	Ultrafast relaxation of photoexcited electrons in undoped GaAs measured by absorption saturation of spinâ€orbitâ€split transitions. Physica Status Solidi (B): Basic Research, 1995, 188, 335-341.	0.7	7
53	Intracavity white-light continuum generation in a femtosecond Ti:sapphire oscillator. Applied Physics Letters, 1998, 73, 2257-2259.	1.5	7
54	Differential Interaction Kinetics of a Bipolar Structure-Specific Endonuclease with DNA Flaps Revealed by Single-Molecule Imaging. PLoS ONE, 2014, 9, e113493.	1.1	6

#	Article	IF	CITATIONS
55	Ultrafast Electron Relaxation through Coulomb Collisions in GaAs. Physica Status Solidi (B): Basic Research, 1997, 204, 293-299.	0.7	5
56	Experimental evidence for the effect of nonequilibrium acoustic plasmons on carrier relaxation in bulk semiconductors. Physical Review B, 1999, 60, R8453-R8456.	1.1	4
57	Intraband spectroscopy of self-organized InAs/InAlAs nanostructures grown on. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 82-83.	1.3	4
58	Triply resonant second-order Raman scattering at theE0andE0+Δ0gap of GaP under uniaxial stress. Physical Review B, 1989, 39, 8308-8312.	1.1	3
59	Femtosecond mid-infrared study of electron dynamics in InAs/InAlAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 151-154.	1.3	3
60	Mechanism of Polariton-Stimulation in a CdTe-Based Microcavity. Physica Status Solidi A, 2000, 178, 129-132.	1.7	2
61	ROS Detection and Quantification with Lanthanide-Based Nanosensors. Biophysical Journal, 2015, 108, 483a.	0.2	2
62	Hole intersubband relaxation in CdTe/CdMnTe quantum wells. Applied Physics Letters, 1997, 71, 788-790.	1.5	1
63	Evidence of Polariton Stimulation in Semiconductor Microcavities. Physica Status Solidi A, 2001, 183, 29-33.	1.7	1
64	<title>Control of low-temperature-grown GaAs for ultrafast switching applications</title> . , 2001, , .		0
65	Functionalized Luminescent Oxide Nanoparticles as Biological Probes. Materials Research Society Symposia Proceedings, 2006, 942, 1.	0.1	0
66	Light Emission Properties and Biological Applications of Lanthanide Doped Oxide Nanoparticles. Materials Research Society Symposia Proceedings, 2007, 1064, 2071.	0.1	0
67	Luminescent oxide nanoparticles with enhanced optical properties. Proceedings of SPIE, 2008, , .	0.8	0
68	Simultaneous observation of ultrafast ligand dissociation and docking-site trapping in heme proteins using upconversion infrared spectroscopy. , 2010, , .		0
69	Optical tweezers calibration with Bayesian inference. Proceedings of SPIE, 2014, , .	0.8	Ο
70	Direct observation of ligand transfer and bond formation in cytochrome c oxidase using mid-infrared chirped-pulse upconversion. Springer Series in Chemical Physics, 2009, , 541-543.	0.2	0