Paul A M Michels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8965174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
3	Evolution of glycolysis. Progress in Biophysics and Molecular Biology, 1993, 59, 105-235.	1.4	420
4	6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochemical Journal, 2004, 381, 561-579.	1.7	336
5	Metabolic functions of glycosomes in trypanosomatids. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1463-1477.	1.9	270
6	Growth of chromosome ends in multiplying trypanosomes. Nature, 1983, 303, 592-597.	13.7	250
7	RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Research, 1982, 10, 3591-3604.	6.5	199
8	Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation. Nature, 1997, 385, 275-278.	13.7	197
9	Plant-like traits associated with metabolism of Trypanosoma parasites. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1067-1071.	3.3	195
10	Glycolysis in Bloodstream Form Trypanosoma brucei Can Be Understood in Terms of the Kinetics of the Glycolytic Enzymes. Journal of Biological Chemistry, 1997, 272, 3207-3215.	1.6	194
11	Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resistance Updates, 2001, 4, 50-65.	6.5	192
12	Chromosome rearrangements in trypanosoma brucei. Cell, 1984, 39, 213-221.	13.5	167
13	What Controls Glycolysis in Bloodstream Form Trypanosoma brucei?. Journal of Biological Chemistry, 1999, 274, 14551-14559.	1.6	159
14	Evolution of energy metabolism and its compartmentation in Kinetoplastida. Parasites and Vectors, 2003, 2, 11.	1.9	153
15	Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiology Letters, 1979, 5, 357-364.	0.7	148
16	Autophagy in protists. Autophagy, 2011, 7, 127-158.	4.3	148
17	Experimental and in Silico Analyses of Glycolytic Flux Control in Bloodstream Form Trypanosoma brucei. Journal of Biological Chemistry, 2005, 280, 28306-28315.	1.6	141
18	Many trypanosome messenger RNAs share a common 5′ terminal sequence. Nucleic Acids Research, 1984, 12. 3777-3790.	6.5	134

#	Article	IF	CITATIONS
19	Metabolic compartmentation in African trypanosomes. Parasitology Today, 1996, 12, 465-471.	3.1	125
20	Activation of the genes for variant surface glycoproteins 117 and 118 in Trypanosoma brucei. Journal of Molecular Biology, 1983, 166, 537-556.	2.0	124
21	Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes. Proceedings of the United States of America, 2008, 105, 17718-17723.	3.3	123
22	Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochemical Journal, 2001, 357, 117-125.	1.7	115
23	Trypanosomes of subgenus trypanozoon are diploid for housekeeping genes. Molecular and Biochemical Parasitology, 1985, 16, 231-242.	O.5	113
24	Autophagy in parasitic protists: Unique features and drug targets. Molecular and Biochemical Parasitology, 2011, 177, 83-99.	0.5	111
25	Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Molecular and Biochemical Parasitology, 2000, 106, 1-10.	O.5	101
26	Turnover of glycosomes during life-cycle differentiation of <i>Trypanosoma brucei</i> . Autophagy, 2008, 4, 294-308.	4.3	101
27	Glucosephosphate isomerase from Trypanosoma brucei. Cloning and characterization of the gene and analysis of the enzyme. FEBS Journal, 1989, 184, 455-464.	0.2	98
28	Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Engineering, Design and Selection, 1999, 12, 243-250.	1.0	97
29	Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1038-1048.	1.9	96
30	Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10098-10103.	3.3	94
31	Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiology Reviews, 2004, 28, 603-643.	3.9	93
32	NMR Spectroscopic Analysis of the First Two Steps of the Pentose-Phosphate Pathway Elucidates the Role of 6-Phosphogluconolactonase. Journal of Biological Chemistry, 2001, 276, 34840-34846.	1.6	90
33	Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Molecular and Biochemical Parasitology, 2008, 158, 189-201.	0.5	90
34	Enolase: A Key Player in the Metabolism and a Probable Virulence Factor of Trypanosomatid Parasites—Perspectives for Its Use as a Therapeutic Target. Enzyme Research, 2011, 2011, 1-14.	1.8	90
35	Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochemical Journal, 2001, 357, 117.	1.7	89
36	ATP Generation in the Trypanosoma brucei Procyclic Form. Journal of Biological Chemistry, 2003, 278, 49625-49635.	1.6	89

#	Article	IF	CITATIONS
37	Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2003, 126, 251-262.	0.5	88
38	The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effector specificity 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1999, 291, 615-635.	2.0	87
39	When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. International Journal for Parasitology, 2012, 42, 1-20.	1.3	87
40	Genetic nomenclature for Trypanosoma and Leishmania. Molecular and Biochemical Parasitology, 1998, 97, 221-224.	0.5	83
41	Telomere conversion in trypanosomes. Nucleic Acids Research, 1983, 11, 8149-8165.	6.5	80
42	The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship. FEBS Journal, 1991, 198, 421-428.	0.2	80
43	Extracellular functions of glycolytic enzymes of parasites: Unpredicted use of ancient proteins. Molecular and Biochemical Parasitology, 2014, 193, 75-81.	0.5	80
44	Molecular Characterization of the First Two Enzymes of the Pentose-phosphate Pathway of Trypanosoma brucei. Journal of Biological Chemistry, 2000, 275, 27559-27565.	1.6	77
45	Structures of Type 2 Peroxisomal Targeting Signals in Two Trypanosomatid Aldolases. Journal of Molecular Biology, 2000, 300, 697-707.	2.0	76
46	Selective Inhibition of Trypanosomal Glyceraldehyde-3-phosphate Dehydrogenase by Protein Structure-Based Design: Toward New Drugs for the Treatment of Sleeping Sickness. Journal of Medicinal Chemistry, 1994, 37, 3605-3613.	2.9	75
47	The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens, 2018, 7, 36.	1.2	73
48	The cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei. Kinetic properties and comparison with homologous enzymes. FEBS Journal, 1991, 198, 429-435.	0.2	71
49	Complex I of Trypanosomatidae: does it exist?. Trends in Parasitology, 2008, 24, 310-317.	1.5	71
50	Enzymes of carbohydrate metabolism as potential drug targets. International Journal for Parasitology, 2001, 31, 482-490.	1.3	70
51	Allosteric Mechanism of Pyruvate Kinase from Leishmania mexicana Uses a Rock and Lock Model. Journal of Biological Chemistry, 2010, 285, 12892-12898.	1.6	70
52	Pulsed field gradient electrophoresis of DNA digested in agarose allows the sizing of the large duplication unit of a surface antigen gene in trypanosomes. Gene, 1986, 42, 313-322.	1.0	69
53	Virtual Screening Identification of Nonfolate Compounds, Including a CNS Drug, as Antiparasitic Agents Inhibiting Pteridine Reductase. Journal of Medicinal Chemistry, 2011, 54, 211-221.	2.9	68
54	Characterization of the role of the receptors PEX5 and PEX7 in the import of proteins into glycosomes of Trypanosoma brucei. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 521-535.	1.9	66

#	Article	IF	CITATIONS
55	Trypanosome variant surface glycoprotein genes expressed early in infection. Journal of Molecular Biology, 1985, 182, 383-396.	2.0	65
56	Enolase from Trypanosoma brucei, from the Amitochondriate Protist Mastigamoeba balamuthi, and from the Chloroplast and Cytosol of Euglena gracilis: Pieces in the Evolutionary Puzzle of the Eukaryotic Glycolytic Pathway. Molecular Biology and Evolution, 2000, 17, 989-1000.	3.5	65
57	The Trypanocidal Drug Suramin and Other Trypan Blue Mimetics Are Inhibitors of Pyruvate Kinases and Bind to the Adenosine Site. Journal of Biological Chemistry, 2011, 286, 31232-31240.	1.6	65
58	Overexpression of trypanosomal triosephosphate isomerase in Escherichia coli and characterisation of a dimer-interface mutant. FEBS Journal, 1993, 211, 703-710.	0.2	64
59	Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. FEBS Journal, 2003, 270, 3205-3213.	0.2	64
60	Autophagy and Related processes in Trypanosomatids: Insights from Genomic and Bioinformatic Analyses. Autophagy, 2006, 2, 107-118.	4.3	64
61	Structure, function, and biogenesis of glycosomes in Kinetoplastida. Journal of Bioenergetics and Biomembranes, 1994, 26, 205-212.	1.0	62
62	Peroxisomes, glyoxysomes and glycosomes (Review). Molecular Membrane Biology, 2005, 22, 133-145.	2.0	61
63	Design, synthesis and trypanocidal activity of lead compounds based on inhibitors of parasite glycolysis. Bioorganic and Medicinal Chemistry, 2008, 16, 5050-5061.	1.4	61
64	Cytosolic NADPH Homeostasis in Glucose-starved Procyclic Trypanosoma brucei Relies on Malic Enzyme and the Pentose Phosphate Pathway Fed by Gluconeogenic Flux. Journal of Biological Chemistry, 2013, 288, 18494-18505.	1.6	61
65	The Electrochemical Proton Gradient Generated by Light in Membrane Vesicles and Chromatophores from Rhodopseudomonas sphaeroides. FEBS Journal, 1978, 85, 147-155.	0.2	59
66	Molecular cloning and analysis of two tandemly linked genes for pyruvate kinase of Trypanosoma brucei. FEBS Journal, 1991, 200, 19-27.	0.2	59
67	Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3342-3345.	1.0	58
68	Transport of Amino Acids in Membrane Vesicles of Rhodopseudomonas spheroides Energized by Respiratory and Cyclic Electron Flow. FEBS Journal, 1975, 55, 397-406.	0.2	57
69	A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathogens, 2017, 13, e1006679.	2.1	57
70	The control of variant surface antigen synthesis in trypanosomes. FEBS Journal, 1983, 137, 383-389.	0.2	56
71	Autophagy in protists: examples of secondary loss, lineage-specific innovations, and the conundrum of remodeling a single mitochondrion. Autophagy, 2009, 5, 784-794.	4.3	56
72	Characterization of the expression-linked gene copies of variant surface glycoprotein 118 in two independently isolated clones ofTrypanosoma brucel. Nucleic Acids Research, 1982, 10, 2353-2366.	6.5	55

#	Article	IF	CITATIONS
73	Horizontal gene transfer in trypanosomatids. Trends in Parasitology, 2007, 23, 470-476.	1.5	54
74	Characterization of the genes for fructose-bisphosphate aldolase in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1988, 29, 65-75.	0.5	53
75	The Glycosomal ATP-Dependent Phosphofructokinase of Trypanosoma Brucei must have Evolved from an Ancestral Pyrophosphate-Dependent Enzyme. FEBS Journal, 1997, 250, 698-704.	0.2	53
76	Molecular analysis of the cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase in Leishmania mexicana. Molecular and Biochemical Parasitology, 1992, 55, 115-126.	0.5	52
77	Naphthoquinone Derivatives Exert Their Antitrypanosomal Activity via a Multi-Target Mechanism. PLoS Neglected Tropical Diseases, 2013, 7, e2012.	1.3	52
78	Structural and functional properties of chromatophores and membrane vesicles from Rhodepseudomonas sphaeroides. Biochimica Et Biophysica Acta - Biomembranes, 1978, 507, 353-368.	1.4	51
79	Molecular analysis of glyceraldehyde-3-phosphate dehydrogenase in Trypanoplasma borelli: An evolutionary scenario of subcellular compartmentation in Kinetoplastida. Journal of Molecular Evolution, 1995, 40, 443-454.	0.8	50
80	A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. Structure, 2000, 8, 541-552.	1.6	50
81	Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase. Phytomedicine, 2013, 20, 270-274.	2.3	50
82	Characterization of Trypanosoma brucei PEX14 and its role in the import of glycosomal matrix proteins. FEBS Journal, 2003, 270, 2059-2067.	0.2	49
83	Trypanosoma bruceiglycosomal ABC transporters: identification and membrane targeting. Molecular Membrane Biology, 2006, 23, 157-172.	2.0	48
84	Structural Insights into the Recognition of Peroxisomal Targeting Signal 1 by Trypanosoma brucei Peroxin 5. Journal of Molecular Biology, 2008, 381, 867-880.	2.0	48
85	Toward the Development of Dualâ€Targeted Glyceraldehydeâ€3â€phosphate Dehydrogenase/Trypanothione Reductase Inhibitors against <i>Trypanosoma brucei</i> and <i>Trypanosoma cruzi</i> . ChemMedChem, 2014, 9, 371-382.	1.6	48
86	Immunochemical analysis of membrane vesicles and chromatophores ofRhodopseudomonas sphaeroidesby crossed immunoelectrophoresis. FEBS Letters, 1979, 107, 300-307.	1.3	47
87	Comparison and Evolutionary Analysis of the Glycosomal Glyceraldehyde-3-Phosphate Dehydrogenase from Different Kinetoplastida. Journal of Molecular Evolution, 1998, 47, 728-738.	0.8	47
88	Leishmania mexicana: Molecular cloning and characterization of enolase. Experimental Parasitology, 2007, 116, 241-251.	0.5	47
89	Peroxisomes in parasitic protists. Molecular and Biochemical Parasitology, 2016, 209, 35-45.	0.5	47
90	Rewiring and regulation of cross-compartmentalized metabolism in protists. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 831-845.	1.8	46

#	Article	IF	CITATIONS
91	Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Current Opinion in Microbiology, 2014, 22, 79-87.	2.3	46
92	Channel-Forming Activities in the Glycosomal Fraction from the Bloodstream Form of Trypanosoma brucei. PLoS ONE, 2012, 7, e34530.	1.1	46
93	Regulation and control of compartmentalized glycolysis in bloodstream formTrypanosoma brucei. Journal of Bioenergetics and Biomembranes, 1995, 27, 513-525.	1.0	45
94	An unexpected extended conformation for the third TPR motif of the peroxin PEX5 from Trypanosoma brucei. Journal of Molecular Biology, 2001, 307, 271-282.	2.0	45
95	Trypanosoma brucei contains a 2,3-bisphosphoglycerate independent phosphoglycerate mutase. FEBS Journal, 2000, 267, 1464-1472.	0.2	44
96	Inhibition of Trypanosoma brucei glucose-6-phosphate dehydrogenase by human steroids and their effects on the viability of cultured parasites. Bioorganic and Medicinal Chemistry, 2009, 17, 2483-2489.	1.4	44
97	A domino effect in drug action: from metabolic assault towards parasite differentiation. Molecular Microbiology, 2011, 79, 94-108.	1.2	44
98	An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor. Biochemical Journal, 2018, 475, 1821-1837.	1.7	44
99	Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Research, 1985, 13, 4661-4676.	6.5	43
100	Molecular and biochemical characterization of novel glucokinases from Trypanosoma cruzi and Leishmania spp Molecular and Biochemical Parasitology, 2007, 156, 235-245.	0.5	43
101	Translocation of solutes and proteins across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with trypanocidal drugs. Parasitology, 2013, 140, 1-20.	0.7	43
102	The glycosomes of the Kinetoplastida. Biochimie, 1993, 75, 231-234.	1.3	42
103	Structure-Based Selectivity Optimization of Piperidine–Pteridine Derivatives as Potent Leishmania Pteridine Reductase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 8318-8329.	2.9	42
104	Identification and characterization of three peroxins—PEX6, PEX10 and PEX12—involved in glycosome biogenesis in Trypanosoma brucei. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 6-17.	1.9	40
105	Glycerol kinase of Trypanosoma brucei. FEBS Journal, 2000, 267, 2323-2333.	0.2	39
106	Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2010, 169, 50-54.	0.5	39
107	Analysis of the Sequence Motifs Responsible for the Interactions of Peroxins 14 and 5, Which Are Involved in Glycosome Biogenesis in Trypanosoma brucei. Biochemistry, 2003, 42, 10915-10922.	1.2	38
108	The crystal structure of glucose-6-phosphate isomerase from Leishmania mexicana reveals novel active site features. FEBS Journal, 2004, 271, 2765-2772.	0.2	38

#	Article	IF	CITATIONS
109	The Crystal Structure of ATP-bound Phosphofructokinase from Trypanosoma brucei Reveals Conformational Transitions Different from those of Other Phosphofructokinases. Journal of Molecular Biology, 2009, 385, 1519-1533.	2.0	38
110	Selective Irreversible Inhibition of Fructose 1,6-Bisphosphate Aldolase fromTrypanosoma brucei. Journal of Medicinal Chemistry, 2006, 49, 1499-1502.	2.9	37
111	Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. European Journal of Cell Biology, 2010, 89, 621-637.	1.6	37
112	Glycosomal ABC transporters of Trypanosoma brucei: Characterisation of their expression, topology and substrate specificity. International Journal for Parasitology, 2011, 41, 429-438.	1.3	37
113	Glycosomal Targets for Anti-Trypanosomatid Drug Discovery. Current Medicinal Chemistry, 2014, 21, 1679-1706.	1.2	37
114	The evolution of kinetoplastid glycosomes. Journal of Bioenergetics and Biomembranes, 1994, 26, 213-219.	1.0	36
115	Cloning and analysis of the PTS-1 receptor in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1999, 104, 107-119.	0.5	36
116	Pyruvate kinase of Leishmania mexicana mexicana Cloning and analysis of the gene, overexpression in Escherichia coli and characterization of the enzyme. Molecular and Biochemical Parasitology, 1994, 64, 43-54.	0.5	35
117	Triose-phosphate isomerase of Leishmania mexicana mexicana Cloning and characterization of the gene, overexpression in Escherichia coli and analysis of the protein. FEBS Journal, 1994, 220, 331-338.	0.2	35
118	TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research, 2015, 43, D637-D644.	6.5	35
119	Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features. Experimental Parasitology, 2021, 224, 108102.	0.5	35
120	The Crystal Structure of Trypanosoma brucei Enolase: Visualisation of the Inhibitory Metal Binding Site III and Potential as Target for Selective, Irreversible Inhibition. Journal of Molecular Biology, 2003, 331, 653-665.	2.0	34
121	Compartmentation of glycolysis in trypanosomes: a potential target for new trypanocidal drugs. Biology of the Cell, 1988, 64, 157-184.	0.7	33
122	Energy coupling of facilitated transport of inorganic ions in Rhodopseudomonas sphaeroides. Journal of Bacteriology, 1982, 150, 1183-1191.	1.0	33
123	Ubiquitination of the glycosomal matrix protein receptor PEX5 in Trypanosoma brucei by PEX4 displays novel features. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3076-3092.	1.9	32
124	Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Molecular and Biochemical Parasitology, 2019, 229, 62-74.	0.5	31
125	Response of 9-Aminoacridine Fluorescence to Transmembrane pH-Gradients in Chromatophores from Rhodopseudomonas sphaeroides. FEBS Journal, 1978, 92, 381-387.	0.2	30
126	Evolutionary aspects of trypanosomes: Analysis of genes. Journal of Molecular Evolution, 1986, 24, 45-52.	0.8	30

#	Article	IF	CITATIONS
127	Organization, sequence and stage-specific expression of the phosphoglycerate kinase genes of Leishmania mexicana mexicana1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBankâ,,¢ and DDJB data bases under the accession numbers X98486 (PGKB) and X98487 (PGKC)1. Molecular and Biochemical Parasitology, 1997, 90, 155-168.	0.5	30
128	The Crystal Structure of Trypanosoma cruzi Glucokinase Reveals Features Determining Oligomerization and Anomer Specificity of Hexose-phosphorylating Enzymes. Journal of Molecular Biology, 2007, 372, 1215-1226.	2.0	29
129	Autophagy in Trypanosomatids. Cells, 2012, 1, 346-371.	1.8	29
130	Pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei is mediated by a facilitated diffusion carrier. Biochemical and Biophysical Research Communications, 1992, 184, 1028-1034.	1.0	28
131	Molecular analysis of phosphoglycerate kinase in Trypanoplasma borreli and the evolution of this enzyme in Kinetoplastida. Gene, 1998, 217, 91-99.	1.0	28
132	Identification, characterization and essentiality of the unusual peroxin 13 from Trypanosoma brucei. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 516-527.	1.9	28
133	Glucose-6-phosphate dehydrogenase is the target for the trypanocidal action of human steroids. Molecular and Biochemical Parasitology, 2011, 176, 112-115.	0.5	28
134	Nanotechnological Strategies for Treatment of Leishmaniasis—A Review. Journal of Biomedical Nanotechnology, 2017, 13, 117-133.	0.5	28
135	Subcellular distribution and characterization of glucosephosphate isomerase in Leishmania mexicana mexicana mexicana. Molecular and Biochemical Parasitology, 1994, 67, 269-279.	0.5	27
136	Cloning and characterization of the NAD-linked glycerol-3-phosphate dehydrogenases of Trypanosoma brucei brucei and Leishmania mexicana mexicana and expression of the trypanosome enzyme in Escherichia coli. Molecular and Biochemical Parasitology, 1996, 76, 159-173.	0.5	27
137	Leishmania donovaniphosphofructokinase. FEBS Journal, 2002, 269, 3978-3989.	0.2	27
138	The mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase of Trypanosomatidae and the glycosomal redox balance of insect stages of Trypanosoma brucei and Leishmania spp Molecular and Biochemical Parasitology, 2006, 149, 155-169.	0.5	27
139	The First Crystal Structure of Phosphofructokinase from a Eukaryote: Trypanosoma brucei. Journal of Molecular Biology, 2007, 366, 1185-1198.	2.0	27
140	Identification of ML251, a Potent Inhibitor of <i>T. brucei and T. cruzi</i> Phosphofructokinase. ACS Medicinal Chemistry Letters, 2014, 5, 12-17.	1.3	27
141	Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology, 2020, 10, 200302.	1.5	27
142	The expression and intracellular distribution of phosphoglycerate kinase isoenzymes in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2001, 118, 111-121.	0.5	26
143	Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis. Tuberculosis, 2014, 94, 405-412.	0.8	26
144	Leishmania mexicana Glycerol-3-phosphate Dehydrogenase Showed Conformational Changes Upon Binding a Bi-substrate Adduct. Journal of Molecular Biology, 2003, 329, 335-349.	2.0	25

#	Article	IF	CITATIONS
145	Crystal Structures of Leishmania mexicana Phosphoglycerate Mutase Suggest a One-Metal Mechanism and a New Enzyme Subclass. Journal of Molecular Biology, 2009, 394, 535-543.	2.0	25
146	An internal sequence targets Trypanosoma brucei triosephosphate isomerase to glycosomes. Molecular and Biochemical Parasitology, 2010, 171, 45-49.	0.5	25
147	The silicon trypanosome. Parasitology, 2010, 137, 1333-1341.	0.7	25
148	Fumarate hydratase isoforms of Leishmania major: Subcellular localization, structural and kinetic properties. International Journal of Biological Macromolecules, 2012, 51, 25-31.	3.6	25
149	Trypanosomes contain two highly different isoforms of peroxin PEX13 involved in glycosome biogenesis. FEBS Letters, 2012, 586, 1765-1771.	1.3	25
150	Structure, Properties, and Function of Glycosomes in Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 2020, 10, 25.	1.8	25
151	Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit Trypanosoma brucei Pteridine Reductase in Support of Early-Stage Drug Discovery. ACS Omega, 2017, 2, 5666-5683.	1.6	24
152	Redox regulation of pyruvate kinase M2 by cysteine oxidation and S-nitrosation. Biochemical Journal, 2018, 475, 3275-3291.	1.7	24
153	Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of <i>Trypanosoma brucei brucei /i>. FASEB Journal, 2019, 33, 13002-13013.</i>	0.2	24
154	Sulphate Removal Induces a Major Conformational Change in Leishmania mexicana Pyruvate Kinase in the Crystalline State. Journal of Molecular Biology, 2008, 383, 615-626.	2.0	23
155	Control and regulation of the pyrophosphate-dependent glucose metabolism in Entamoeba histolytica. Molecular and Biochemical Parasitology, 2019, 229, 75-87.	0.5	23
156	Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity. Redox Biology, 2019, 26, 101231.	3.9	22
157	Characterization of the cofactor-independent phosphoglycerate mutase from Leishmania mexicana mexicana mexicana. Histidines that coordinate the two metal ions in the active site show different susceptibilities to irreversible chemical modification. FEBS Journal, 2004, 271, 1798-1810.	0.2	21
158	A new family of covalent inhibitors block nucleotide binding to the active site of pyruvate kinase. Biochemical Journal, 2012, 448, 67-72.	1.7	21
159	Structures of pyruvate kinases display evolutionarily divergent allosteric strategies. Royal Society Open Science, 2014, 1, 140120.	1.1	21
160	Fast acting allosteric phosphofructokinase inhibitors block trypanosome glycolysis and cure acute African trypanosomiasis in mice. Nature Communications, 2021, 12, 1052.	5.8	21
161	Molecular characterisation of Trypanosoma brucei alkyl dihydroxyacetone-phosphate synthase. Molecular and Biochemical Parasitology, 1999, 104, 55-66.	0.5	20
162	Exploring the Active Site ofTrypanosoma bruceiPhosphofructokinase by Inhibition Studies:Â Specific Irreversible Inhibitionâ€. Biochemistry, 2002, 41, 10183-10193.	1.2	20

#	Article	IF	CITATIONS
163	Evolutionary analysis of fructose 2,6-bisphosphate metabolism. IUBMB Life, 2006, 58, 133-141.	1.5	20
164	Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop. Biochemical Journal, 2013, 455, 119-130.	1.7	20
165	Biochemical and transcript level differences between the three human phosphofructokinases show optimisation of each isoform for specific metabolic niches. Biochemical Journal, 2020, 477, 4425-4441.	1.7	20
166	ADP-ribosyl transferase activity in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1985, 14, 251-259.	0.5	19
167	The electrochemical proton gradient in the bloodstream form of Trypanosoma brucei is dependent on the temperature. Molecular and Biochemical Parasitology, 1992, 55, 21-27.	0.5	19
168	Glycosomal Glyceraldehyde-3-phosphate Dehydrogenase of Trypanosoma brucei and Trypanosoma cruzi: Expression in Escherichia coli, Purification, and Characterization of the Enzymes. Protein Expression and Purification, 1995, 6, 244-250.	0.6	19
169	Purification and characterisation of the phosphoglycerate kinase isoenzymes of Trypanosoma brucei expressed in Escherichia coli. BBA - Proteins and Proteomics, 1998, 1386, 179-188.	2.1	19
170	Pyruvate Kinase ofTrypanosoma brucei:Overexpression, Purification, and Functional Characterization of Wild-Type and Mutated Enzyme. Protein Expression and Purification, 1998, 13, 373-382.	0.6	19
171	Glucose-6-Phosphate Dehydrogenase of Trypanosomatids: Characterization, Target Validation, and Drug Discovery. Molecular Biology International, 2011, 2011, 1-10.	1.7	19
172	The phosphoglycerate kinase isoenzymes have distinct roles in the regulation of carbohydrate metabolism in Trypanosoma cruzi. Experimental Parasitology, 2014, 143, 39-47.	0.5	19
173	The importance of dynamic light scattering in obtaining multiple crystal forms of trypanosoma brucei PGK. Protein Science, 1998, 7, 504-507.	3.1	18
174	Structural role of the activeâ€site metal in the conformation of <i>Trypanosoma brucei</i> phosphoglycerate mutase. FEBS Journal, 2012, 279, 2012-2021.	2.2	18
175	In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2014, 198, 18-28.	0.5	18
176	Purification and Characterization of the Native and the Recombinant Leishmania Mexicana Glycosomal Glyceraldehyde-3-Phosphate Dehydrogenase. FEBS Journal, 1994, 225, 143-149.	0.2	17
177	Comparative study of Leishmania mexicana and Trypanosoma brucei NAD-dependent glycerol-3-phosphate dehydrogenase. Molecular and Biochemical Parasitology, 2000, 106, 83-91.	0.5	17
178	The characterization and evolutionary relationships of a trypanosomal thiolase. International Journal for Parasitology, 2011, 41, 1273-1283.	1.3	17
179	Effects of the medium composition on the components of the electrochemical proton gradient in Rhodopseudomonas sphaeroides. Archives of Microbiology, 1981, 130, 357-361.	1.0	16
180	The putative effector-binding site ofLeishmania mexicanapyruvate kinase studied by site-directed mutagenesis. FEBS Letters, 2002, 514, 255-259.	1.3	16

#	Article	IF	CITATIONS
181	`In crystallo' substrate binding triggers major domain movements and reveals magnesium as a co-activator ofTrypanosoma bruceipyruvate kinase. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1768-1779.	2.5	16
182	Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2018, 219, 52-66.	0.5	16
183	Nuclear and cell division in Bacillus subtilis: dormant nucleoids in stationary-phase cells and their activation. Journal of Bacteriology, 1975, 121, 1189-1199.	1.0	16
184	Cloning and characterization of Leishmania mexicana fructose-1,6-bisphosphate aldolase. Molecular and Biochemical Parasitology, 1999, 103, 279-283.	0.5	15
185	Cloning and Sequence Analysis of the Gene Encoding Pyruvate Kinase in Trypanoplasma borelli. Biochemical and Biophysical Research Communications, 1994, 201, 727-732.	1.0	14
186	The Multifunctional Isopropyl Alcohol Dehydrogenase of Phytomonas sp. Could Be the Result of a Horizontal Gene Transfer from a Bacterium to the Trypanosomatid Lineage. Journal of Biological Chemistry, 2003, 278, 36169-36175.	1.6	14
187	Biochemical characterization of highly active Trypanosoma brucei gambiense glycerol kinase, a promising drug target. Journal of Biochemistry, 2013, 154, 77-84.	0.9	14
188	Molecular basis for the reverse reaction of <scp>A</scp> frican human trypanosomes glycerol kinase. Molecular Microbiology, 2014, 94, 1315-1329.	1.2	14
189	ATG24 Represses Autophagy and Differentiation and Is Essential for Homeostasy of the Flagellar Pocket in Trypanosoma brucei. PLoS ONE, 2015, 10, e0130365.	1.1	14
190	The glycosome of trypanosomes: Properties and biogenesis of a microbody. Experimental Parasitology, 1989, 69, 310-315.	0.5	13
191	6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS Journal, 2005, 272, 3542-3560.	2.2	13
192	An improved strategy for the crystallization of <i>Leishmania mexicana</i> pyruvate kinase. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 215-218.	0.7	13
193	Studies on the organization of the docking complex involved in matrix protein import into glycosomes of Trypanosoma brucei. Biochemical and Biophysical Research Communications, 2012, 424, 781-785.	1.0	13
194	Extra-glycosomal localisation of Trypanosoma brucei hexokinase 2. International Journal for Parasitology, 2012, 42, 401-409.	1.3	13
195	Evaluation of Antigens for Development of a Serological Test for Human African Trypanosomiasis. PLoS ONE, 2016, 11, e0168074.	1.1	12
196	Genetic and Chemical Evaluation of Trypanosoma brucei Oleate Desaturase as a Candidate Drug Target. PLoS ONE, 2010, 5, e14239.	1.1	12
197	Structures of Leishmania Fructose-1,6-Bisphosphatase Reveal Species-Specific Differences in the Mechanism of Allosteric Inhibition. Journal of Molecular Biology, 2017, 429, 3075-3089.	2.0	11
198	Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling. Current Medicinal Chemistry, 2019, 26, 6652-6671.	1.2	11

#	Article	IF	CITATIONS
199	Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: New insights and new questions. Journal of Eukaryotic Microbiology, 2022, 69, e12897.	0.8	11
200	Cloning of a 1.8 kb repeated sequence for the identification and comparison of Giardia intestinalis isolates. European Journal of Protistology, 1989, 24, 162-167.	0.5	10
201	Phosphoglycerate mutase from Trypanosoma brucei is hyperactivated by cobalt in vitro, but not in vivo. Metallomics, 2011, 3, 1310.	1.0	10
202	The NAD ⁺ metabolism of <i>Leishmania</i> , notably the enzyme nicotinamidase involved in NAD ⁺ salvage, offers prospects for development of antiâ€parasite chemotherapy. Molecular Microbiology, 2011, 82, 4-8.	1.2	10
203	Biochemical effects of riluzole on Leishmania parasites. Experimental Parasitology, 2013, 133, 250-254.	0.5	10
204	Glycerol kinase of African trypanosomes possesses an intrinsic phosphatase activity. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2830-2842.	1.1	10
205	The kinetic characteristics of human and trypanosomatid phosphofructokinases for the reverse reaction. Biochemical Journal, 2019, 476, 179-191.	1.7	10
206	MicroRNAs: master regulators in host–parasitic protist interactions. Open Biology, 2022, 12, .	1.5	10
207	Organization, structure and evolutionary aspects of genes in trypanosomes. Biochemical Society Transactions, 1990, 18, 727-729.	1.6	9
208	Leishmania mexicana mexicanaglucose-6-phosphate isomerase: crystallization, molecular-replacement solution and inhibition. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 915-919.	2.5	9
209	Trypanosomatid phosphoglycerate mutases have multiple conformational and oligomeric states. Biochemical and Biophysical Research Communications, 2014, 450, 936-941.	1.0	9
210	CYTOCHROME c DEFICIENT MUTANTS OFRHODOPSEUDOMONAS CAPSULATA. FEMS Microbiology Letters, 1980, 7, 327-331.	0.7	8
211	A Family of Highly Conserved Glycosomal 2-Hydroxyacid Dehydrogenases from Phytomonas sp Journal of Biological Chemistry, 2000, 275, 31833-31837.	1.6	8
212	Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei. Biochemical and Biophysical Research Communications, 2011, 412, 286-290.	1.0	8
213	Kinetic and structural studies of <i>Trypanosoma</i> and <i>Leishmania</i> phosphofructokinases show evolutionary divergence and identify AMP as a switch regulating glycolysis <i>versus</i> gluconeogenesis. FEBS Journal, 2020, 287, 2847-2861.	2.2	8
214	Protein structure-based design of anti-protozoal drugs. Journal of the Brazilian Chemical Society, 2002, 13, 843-844.	0.6	8
215	Overproduction, purification, crystallization and preliminary X-ray diffraction analysis ofTrypanosoma brucei gambienseglycerol kinase. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 304-308.	0.7	7
216	Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Experimental Parasitology, 2016, 165, 7-15.	0.5	7

#	Article	IF	CITATIONS
217	Pyruvate kinase from Plasmodium falciparum: Structural and kinetic insights into the allosteric mechanism. Biochemical and Biophysical Research Communications, 2020, 532, 370-376.	1.0	7
218	Trypanosoma brucei: Metabolomics for analysis of cellular metabolism and drug discovery. Metabolomics, 2022, 18, 20.	1.4	7
219	Light-induced spectral changes of carotenoids in chromatophores of Rhodopseudomonas sphaeroides. Archives of Biochemistry and Biophysics, 1980, 201, 403-410.	1.4	6
220	Pyruvate kinases have an intrinsic and conserved decarboxylase activity. Biochemical Journal, 2014, 458, 301-311.	1.7	6
221	The glycosomal-membrane associated phosphoglycerate kinase isoenzyme A plays a role in sustaining the glucose flux in Trypanosoma cruzi epimastigotes. Molecular and Biochemical Parasitology, 2015, 200, 5-8.	0.5	6
222	Pyruvate Kinase Regulates the Pentose-Phosphate Pathway in Response to Hypoxia in Mycobacterium tuberculosis. Journal of Molecular Biology, 2019, 431, 3690-3705.	2.0	6
223	The SCP2-thiolase-like protein (SLP) of <i>Trypanosoma brucei</i> is an enzyme involved in lipid metabolism. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1075-1096.	1.5	5
224	Crystallographic substrate binding studies ofLeishmania mexicanaSCP2-thiolase (type-2): unique features of oxyanion hole-1. Protein Engineering, Design and Selection, 2017, 30, 225-233.	1.0	5
225	The evolution of organellar metabolism in unicellular eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 693-698.	1.8	4
226	Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei. Biochemical and Biophysical Research Communications, 2013, 431, 98-103.	1.0	4
227	Enolase from Trypanosoma cruzi is inhibited by its interaction with metallocarboxypeptidase-1 and a putative acireductone dioxygenase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 651-660.	1.1	4
228	Effect of ligands and redox state on phosphofructokinase quaternary structure and enzymatic activity. Lancet, The, 2017, 389, S36.	6.3	1
229	Structural and kinetic characterization of Trypanosoma congolense pyruvate kinase. Molecular and Biochemical Parasitology, 2020, 236, 111263.	0.5	1
230	Biogenesis and Evolutionary Origin of Peroxisomes. , 1989, , 187-195.		1
231	Carbon Metabolism as a Drug Target in <i>Leishmania</i> . RSC Drug Discovery Series, 2017, , 297-315.	0.2	1
232	Aerobic Protists—Trypanosomatidae. , 2003, , 140-153.		0
233	Using Metabolic Control Analysis To Improve The Selectivity and Effectiveness of Drugs Against Parasitic Diseases. , 2000, , 157-164.		0
234	Rational Design of Trypanocidal Drugs. , 1990, , 295-304.		0