Sebastian Kozerke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8964814/publications.pdf Version: 2024-02-01

		34105	30922
317	12,860	52	102
papers	citations	h-index	g-index
321	321	321	9993
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Modified Look-Locker inversion recovery (MOLLI) for high-resolutionT1 mapping of the heart. Magnetic Resonance in Medicine, 2004, 52, 141-146.	3.0	1,485
2	4D flow cardiovascular magnetic resonance consensus statement. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 72.	3.3	642
3	4D flow MRI. Journal of Magnetic Resonance Imaging, 2012, 36, 1015-1036.	3.4	583
4	Accelerating cardiac cine 3D imaging usingk-t BLAST. Magnetic Resonance in Medicine, 2004, 52, 19-26.	3.0	514
5	Compressed sensing in dynamic MRI. Magnetic Resonance in Medicine, 2008, 59, 365-373.	3.0	481
6	Cardiac SSFP imaging at 3 Tesla. Magnetic Resonance in Medicine, 2004, 51, 799-806.	3.0	271
7	<i>kâ€ŧ</i> PCA: Temporally constrained <i>kâ€ŧ</i> BLAST reconstruction using principal component analysis. Magnetic Resonance in Medicine, 2009, 62, 706-716.	3.0	253
8	Cardiac MRI Endpoints in MyocardialÂInfarction Experimental andÂClinicalÂTrials. Journal of the American College of Cardiology, 2019, 74, 238-256.	2.8	235
9	Array compression for MRI with large coil arrays. Magnetic Resonance in Medicine, 2007, 57, 1131-1139.	3.0	202
10	High-Resolution Magnetic Resonance Myocardial Perfusion Imaging at 3.0-Tesla to Detect Hemodynamically Significant Coronary Stenoses as Determined by Fractional Flow Reserve. Journal of the American College of Cardiology, 2011, 57, 70-75.	2.8	183
11	Intracoronary Injection of Bone Marrow–Derived Mononuclear Cells Early or Late After Acute Myocardial Infarction. Circulation, 2013, 127, 1968-1979.	1.6	179
12	MRI temporal acceleration techniques. Journal of Magnetic Resonance Imaging, 2012, 36, 543-560.	3.4	165
13	Dynamic contrastâ€enhanced myocardial perfusion MRI accelerated with <i>kâ€t</i> sense. Magnetic Resonance in Medicine, 2007, 58, 777-785.	3.0	138
14	Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magnetic Resonance in Medicine, 1999, 42, 970-978.	3.0	128
15	Accelerating cine phase-contrast flow measurements usingk-t BLAST andk-t SENSE. Magnetic Resonance in Medicine, 2005, 54, 1430-1438.	3.0	127
16	Metabolic Imaging of Myocardial Triglyceride Content: Reproducibility of ¹ H MR Spectroscopy with Respiratory Navigator Gating in Volunteers. Radiology, 2007, 245, 251-257.	7.3	124
17	Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. Journal of Applied Physiology, 2014, 117, 142-152.	2.5	117
18	Optimizing spatiotemporal sampling fork-t BLAST andk-t SENSE: Application to high-resolution real-time cardiac steady-state free precession. Magnetic Resonance in Medicine, 2005, 53, 1372-1382.	3.0	115

#	Article	IF	CITATIONS
19	Diffusion imaging of the in vivo heart using spin echoes–considerations on bulk motion sensitivity. Magnetic Resonance in Medicine, 2007, 57, 331-337.	3.0	112
20	Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data. Journal of the American College of Cardiology, 1998, 32, 128-134.	2.8	104
21	Validation of Dynamic 3-Dimensional Whole Heart Magnetic Resonance Myocardial Perfusion Imaging Against Fractional Flow Reserve for the Detection of Significant Coronary Artery Disease. Journal of the American College of Cardiology, 2012, 60, 756-765.	2.8	103
22	In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing. Medical Image Analysis, 2013, 17, 1243-1255.	11.6	101
23	Aortic and mitral regurgitation: Quantification using moving slice velocity mapping. Journal of Magnetic Resonance Imaging, 2001, 14, 106-112.	3.4	97
24	High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. European Heart Journal, 2008, 29, 2148-2155.	2.2	96
25	Accelerated wholeâ€heart 3D CSPAMM for myocardial motion quantification. Magnetic Resonance in Medicine, 2008, 59, 755-763.	3.0	95
26	MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 63.	3.3	94
27	Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. Nature Reviews Cardiology, 2020, 17, 427-450.	13.7	94
28	Automatic vessel segmentation using active contours in cine phase contrast flow measurements. Journal of Magnetic Resonance Imaging, 1999, 10, 41-51.	3.4	90
29	Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. Journal of Magnetic Resonance Imaging, 2001, 13, 690-698.	3.4	90
30	Secondâ€order motionâ€compensated spin echo diffusion tensor imaging of the human heart. Magnetic Resonance in Medicine, 2016, 75, 1669-1676.	3.0	90
31	k-Space and Time Sensitivity Encoding–accelerated Myocardial Perfusion MR Imaging at 3.0 T: Comparison with 1.5 T. Radiology, 2008, 249, 493-500.	7.3	86
32	Prospective selfâ€gating for simultaneous compensation of cardiac and respiratory motion. Magnetic Resonance in Medicine, 2008, 60, 683-690.	3.0	80
33	Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. European Heart Journal, 2012, 33, 2016-2024.	2.2	76
34	Heterogeneous growth-induced prestrain in the heart. Journal of Biomechanics, 2015, 48, 2080-2089.	2.1	75
35	Effect of Bone Marrow–Derived Mononuclear Cell Treatment, Early or Late After Acute Myocardial Infarction. Circulation Research, 2016, 119, 481-490.	4.5	75
36	Dynamic 3-Dimensional Stress Cardiac Magnetic Resonance Perfusion Imaging. Journal of the American College of Cardiology, 2011, 57, 437-444.	2.8	74

#	Article	IF	CITATIONS
37	Respiratory bellows revisited for motion compensation: Preliminary experience for cardiovascular MR. Magnetic Resonance in Medicine, 2011, 65, 1097-1102.	3.0	73
38	Dual-Phase Cardiac Diffusion Tensor Imaging with Strain Correction. PLoS ONE, 2014, 9, e107159.	2.5	72
39	Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope. Investigative Radiology, 2009, 44, 539-547.	6.2	68
40	High resolution threeâ€dimensional cardiac perfusion imaging using compartmentâ€based <i>kâ€t</i> principal component analysis. Magnetic Resonance in Medicine, 2011, 65, 575-587.	3.0	68
41	3D cine displacementâ€encoded MRI of pulsatile brain motion. Magnetic Resonance in Medicine, 2009, 61, 153-162.	3.0	67
42	Acute, Subacute, and Chronic Myocardial Infarction: Quantitative Comparison of 2D and 3D Late Gadolinium Enhancement MR Imaging. Radiology, 2011, 259, 704-711.	7.3	65
43	Microstructural Impact of Ischemia and Bone Marrow–Derived Cell Therapy Revealed With Diffusion Tensor Magnetic Resonance Imaging Tractography of the Heart In Vivo. Circulation, 2014, 129, 1731-1741.	1.6	65
44	Quantitation of circumferential subpixel vessel wall position and wall shear stress by multiple sectored three-dimensional paraboloid modeling of velocity encoded cine MR. Magnetic Resonance in Medicine, 1998, 40, 645-655.	3.0	64
45	Sensitivity-encoded coronary MRA at 3T. Magnetic Resonance in Medicine, 2004, 52, 221-227.	3.0	64
46	A multi-sample 94GHz dissolution dynamic-nuclear-polarization system. Journal of Magnetic Resonance, 2012, 214, 166-174.	2.1	63
47	On the influence of training data quality ink-t BLAST reconstruction. Magnetic Resonance in Medicine, 2004, 52, 1175-1183.	3.0	61
48	Turbulent Kinetic Energy Assessed by Multipoint 4-Dimensional Flow Magnetic Resonance Imaging Provides Additional Information Relative to Echocardiography for the Determination of Aortic Stenosis Severity. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	60
49	Bayesian multipoint velocity encoding for concurrent flow and turbulence mapping. Magnetic Resonance in Medicine, 2013, 69, 1337-1345.	3.0	59
50	ISMRM Raw data format: A proposed standard for MRI raw datasets. Magnetic Resonance in Medicine, 2017, 77, 411-421.	3.0	59
51	Multicenter Evaluation of Dynamic Three-Dimensional Magnetic Resonance Myocardial Perfusion Imaging for the Detection of Coronary Artery Disease Defined by Fractional Flow Reserve. Circulation: Cardiovascular Imaging, 2015, 8, .	2.6	58
52	Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	58
53	Nonrigid retrospective respiratory motion correction in wholeâ€heart coronary MRA. Magnetic Resonance in Medicine, 2011, 66, 1541-1549.	3.0	56
54	Quantitative Analysis of Vortical Blood Flow in the Thoracic Aorta Using 4D Phase Contrast MRI. PLoS ONE, 2015, 10, e0139025.	2.5	56

#	Article	IF	CITATIONS
55	Three-dimensional magnetic resonance imaging of congenital cardiac anomalies. Cardiology in the Young, 2003, 13, 461-465.	0.8	55
56	First Evidence of Depressed Contractility in the Border Zone of a Human Myocardial Infarction. Annals of Thoracic Surgery, 2012, 93, 1188-1193.	1.3	53
57	Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart. Magnetic Resonance in Medicine, 2016, 76, 862-872.	3.0	53
58	Quantitative abdominal aortic flow measurements at controlled levels of ergometer exercise. Magnetic Resonance Imaging, 1999, 17, 489-494.	1.8	52
59	High-Resolution Versus Standard-Resolution Cardiovascular MR Myocardial Perfusion Imaging for the Detection of Coronary Artery Disease. Circulation: Cardiovascular Imaging, 2012, 5, 306-313.	2.6	51
60	Analysis and correction of background velocity offsets in phase ontrast flow measurements using magnetic field monitoring. Magnetic Resonance in Medicine, 2012, 67, 1294-1302.	3.0	51
61	Four-dimensional single breathhold magnetic resonance imaging usingkt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. Journal of Magnetic Resonance Imaging, 2007, 25, 737-742.	3.4	50
62	T1 mapping in ischaemic heart disease. European Heart Journal Cardiovascular Imaging, 2014, 15, 597-602.	1.2	50
63	Navigator gating and volume tracking for double-triggered cardiac proton spectroscopy at 3 Tesla. Magnetic Resonance in Medicine, 2004, 51, 1091-1095.	3.0	49
64	Firstâ€pass contrastâ€enhanced myocardial perfusion MRI in mice on a 3â€T clinical MR scanner. Magnetic Resonance in Medicine, 2010, 64, 1592-1598.	3.0	48
65	In vivo Human 3D Cardiac Fibre Architecture: Reconstruction Using Curvilinear Interpolation of Diffusion Tensor Images. Lecture Notes in Computer Science, 2010, 13, 418-425.	1.3	48
66	Sparsity transform kâ€ŧ principal component analysis for accelerating cine threeâ€dimensional flow measurements. Magnetic Resonance in Medicine, 2013, 70, 53-63.	3.0	46
67	Analysis of temperature dependence of background phase errors in phase-contrast cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 97.	3.3	46
68	Towards highly accelerated Cartesian time-resolved 3D flow cardiovascular magnetic resonance in the clinical setting. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 42.	3.3	45
69	Robust MR elastography stiffness quantification using a localized divergence free finite element reconstruction. Medical Image Analysis, 2018, 44, 126-142.	11.6	45
70	k-t BLAST reconstruction from non-Cartesiank-t space sampling. Magnetic Resonance in Medicine, 2006, 55, 85-91.	3.0	44
71	Quantitative three-dimensional cardiovascular magnetic resonance myocardial perfusion imaging in systole and diastole. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 19.	3.3	43
72	Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 42.	3.3	43

#	Article	IF	CITATIONS
73	Deep variational network for rapid 4D flow MRI reconstruction. Nature Machine Intelligence, 2020, 2, 228-235.	16.0	43
74	Reconstruction of divergenceâ€free velocity fields from cine 3D phaseâ€contrast flow measurements. Magnetic Resonance in Medicine, 2013, 69, 200-210.	3.0	42
75	Blood flow in the human ascending aorta: a combined MRI and CFD study. Journal of Engineering Mathematics, 2003, 47, 387-404.	1.2	41
76	Advanced Cardiovascular Magnetic Resonance Myocardial Perfusion Imaging. Circulation: Cardiovascular Imaging, 2013, 6, 339-348.	2.6	41
77	A prospective evaluation of cardiovascular magnetic resonance measures of dyssynchrony in the prediction of response to cardiac resynchronization therapy. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 58.	3.3	41
78	Realâ€ŧime motion correction using gradient tones and headâ€mounted <scp>NMR</scp> field probes. Magnetic Resonance in Medicine, 2015, 74, 647-660.	3.0	41
79	Highly undersampled phaseâ€contrast flow measurements using compartmentâ€based <i>k</i> – <i>t</i> principal component analysis. Magnetic Resonance in Medicine, 2013, 69, 434-443.	3.0	40
80	Imageâ€based background phase error correction in 4D flow MRI revisited. Journal of Magnetic Resonance Imaging, 2017, 46, 1516-1525.	3.4	40
81	Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring. Medical Physics, 2013, 41, 012302.	3.0	39
82	Ischemic Burden by 3-Dimensional Myocardial Perfusion Cardiovascular Magnetic Resonance. Circulation: Cardiovascular Imaging, 2014, 7, 647-654.	2.6	39
83	Myocardial Scar Delineation Using Diffusion Tensor Magnetic Resonance Tractography. Journal of the American Heart Association, 2018, 7, .	3.7	39
84	Volume tracking cardiac31P spectroscopy. Magnetic Resonance in Medicine, 2002, 48, 380-384.	3.0	38
85	MR Myocardial Perfusion Imaging with k-Space and Time Broad-Use Linear Acquisition Speed-up Technique: Feasibility Study. Radiology, 2007, 245, 863-871.	7.3	38
86	Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 29.	3.3	38
87	Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 56.	3.3	37
88	Reduced Data Acquisition Methods in Cardiac Imaging. Topics in Magnetic Resonance Imaging, 2004, 15, 161-168.	1.2	36
89	Left ventricular dyssynchrony in patients with left bundle branch block and patients after myocardial infarction: integration of mechanics and viability by cardiac magnetic resonance. European Heart Journal, 2009, 30, 2117-2127.	2.2	36
90	Assessment of human brain motion using CSPAMM. Journal of Magnetic Resonance Imaging, 2007, 25, 709-714.	3.4	35

#	Article	IF	CITATIONS
91	Clinical Feasibility of Accelerated, High Spatial Resolution Myocardial Perfusion Imaging. JACC: Cardiovascular Imaging, 2010, 3, 710-717.	5.3	35
92	Dissolution dynamic nuclear polarization efficiency enhanced by Hartmann–Hahn cross polarization. Chemical Physics Letters, 2012, 554, 72-76.	2.6	34
93	Equilibrated warping: Finite element image registration with finite strain equilibrium gap regularization. Medical Image Analysis, 2018, 50, 1-22.	11.6	34
94	Catheter tracking and visualization using19F nuclear magnetic resonance. Magnetic Resonance in Medicine, 2004, 52, 693-697.	3.0	33
95	Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks. Medical Image Analysis, 2021, 71, 102066.	11.6	33
96	Mapping mean and fluctuating velocities by Bayesian multipoint MR velocity encodingâ€validation against 3D particle tracking velocimetry. Magnetic Resonance in Medicine, 2014, 71, 1405-1415.	3.0	32
97	Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 6.	3.3	32
98	Imaging localized neuronal activity at fast time scales through biomechanics. Science Advances, 2019, 5, eaav3816.	10.3	32
99	Heart Motion-adapted MR Velocity Mapping of Blood Velocity Distribution Downstream of Aortic Valve Prostheses: Initial Experience. Radiology, 2001, 218, 548-555.	7.3	31
100	Accelerated dynamic Fourier velocity encoding by exploiting velocity-spatio-temporal correlations. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2004, 17, 86-94.	2.0	31
101	Hyperpolarized Metabolic MR Imaging of Acute Myocardial Changes and Recovery after Ischemia-Reperfusion in a Small-Animal Model. Radiology, 2016, 278, 742-751.	7.3	31
102	Hybrid multiband excitation multiecho acquisition for hyperpolarized ¹³ C spectroscopic imaging. Magnetic Resonance in Medicine, 2015, 73, 1713-1717.	3.0	30
103	On the accuracy of viscous and turbulent loss quantification in stenotic aortic flow using phaseâ€contrast MRI. Magnetic Resonance in Medicine, 2016, 76, 191-196.	3.0	30
104	Assessment of left ventricular volumes and mass with fast 3D cine steadyâ€state free precession <i>kâ€t</i> space broadâ€use linear acquisition speedâ€up technique (kâ€t BLAST). Journal of Magnetic Resonance Imaging, 2008, 27, 510-515.	3.4	29
105	A Novel Method for Quantifying Smooth Regional Variations in Myocardial Contractility Within an Infarcted Human Left Ventricle Based on Delay-Enhanced Magnetic Resonance Imaging. Journal of Biomechanical Engineering, 2015, 137, 081009.	1.3	29
106	Automatic accurate non-invasive quantitation of blood flow, cross-sectional vessel area, and wall shear stress by modelling of magnetic resonance velocity data. European Journal of Vascular and Endovascular Surgery, 1998, 16, 517-524.	1.5	27
107	Characterization and correction of eddy-current artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring. Journal of Magnetic Resonance, 2014, 244, 74-84.	2.1	27
108	Material-Dependent Implant Artifact Reduction Using SEMAC-VAT and MAVRIC. Investigative Radiology, 2017, 52, 381-387.	6.2	27

#	Article	IF	CITATIONS
109	Low-dose CT and cardiac MR for the diagnosis of coronary artery disease: accuracy of single and combined approaches. International Journal of Cardiovascular Imaging, 2010, 26, 579-590.	1.5	25
110	Cross-polarization for dissolution dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2014, 16, 21407-21416.	2.8	25
111	Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture. European Radiology, 2014, 24, 2810-2818.	4.5	25
112	Accelerating 4D flow MRI by exploiting vector field divergence regularization. Magnetic Resonance in Medicine, 2016, 75, 115-125.	3.0	24
113	Overestimation of cardiac lactate production caused by liver metabolism of hyperpolarized [1â€ ¹³ <scp>C</scp>]pyruvate. Magnetic Resonance in Medicine, 2018, 80, 1882-1890.	3.0	24
114	Visualization and quantification of intestinal transit and motor function by realâ€ŧime tracking of ¹⁹ F labeled capsules in humans. Magnetic Resonance in Medicine, 2011, 66, 812-820.	3.0	23
115	Dissolution DNP using trityl radicals at 7 T field. Physical Chemistry Chemical Physics, 2017, 19, 19196-19204.	2.8	23
116	Determinants of myocardial function characterized by CMR-derived strain parameters in left ventricular non-compaction cardiomyopathy. Scientific Reports, 2019, 9, 15882.	3.3	23
117	Determination of Peak Velocity in Stenotic Areas: Echocardiography versus k-t SENSE Accelerated MR Fourier Velocity Encoding. Radiology, 2008, 246, 249-257.	7.3	22
118	A biphasic multilayer computational model of human skin. Biomechanics and Modeling in Mechanobiology, 2021, 20, 969-982.	2.8	22
119	Combined CFD and MRI study of blood flow in a human ascending aorta model. Biorheology, 2002, 39, 425-9.	0.4	22
120	Myocardial <i>T</i> mapping free of distortion using susceptibilityâ€weighted fast spinâ€echo imaging: A feasibility study at 1.5 T and 3.0 T. Magnetic Resonance in Medicine, 2009, 62, 822-828.	3.0	21
121	Coronary artery disease: Which degree of coronary artery stenosis is indicative of ischemia?. European Journal of Radiology, 2011, 80, 120-126.	2.6	21
122	Small Animal Look-Locker Inversion Recovery (SALLI) for Simultaneous Generation of Cardiac T1 Maps and Cine and Inversion Recovery–prepared Images at High Heart Rates: Initial Experience. Radiology, 2011, 261, 258-265.	7.3	21
123	Iterative k-t principal component analysis with nonrigid motion correction for dynamic three-dimensional cardiac perfusion imaging. Magnetic Resonance in Medicine, 2014, 72, 68-79.	3.0	21
124	Highâ€resolution diffusion tensor imaging of the human kidneys using a freeâ€breathing, multiâ€slice, targeted field of view approach. NMR in Biomedicine, 2014, 27, 1300-1312.	2.8	21
125	Shear-scaling-based approach for irreversible energy loss estimation in stenotic aortic flow – An in vitro study. Journal of Biomechanics, 2017, 56, 89-96.	2.1	21
126	Ristretto MRE: A generalized multiâ€shot GREâ€MRE sequence. NMR in Biomedicine, 2019, 32, e4049.	2.8	21

#	Article	IF	CITATIONS
127	Free-breathing radial acquisitions of the heart. Magnetic Resonance in Medicine, 2004, 52, 1127-1135.	3.0	20
128	2D-Spatially-Selective Real-Time Magnetic Resonance Imaging for the Assessment of Microvascular Function and Its Relation to the Cardiovascular Risk Profile. Journal of Cardiovascular Magnetic Resonance, 2006, 8, 759-769.	3.3	20
129	Whole heart magnetizationâ€prepared steadyâ€state free precession coronary vein MRI. Journal of Magnetic Resonance Imaging, 2009, 29, 1293-1299.	3.4	20
130	Patient-specific simulations and measurements of the magneto-hemodynamic effect in human primary vessels. Physiological Measurement, 2012, 33, 117-130.	2.1	20
131	Assessment of ischaemic burden in angiographic three-vessel coronary artery disease with high-resolution myocardial perfusion cardiovascular magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2014, 15, 701-708.	1.2	20
132	Accelerated cardiac MR stress perfusion with radial sampling after physical exercise with an MRâ€compatible supine bicycle ergometer. Magnetic Resonance in Medicine, 2015, 74, 384-395.	3.0	20
133	The visualisation and quantification of human gastrointestinal fat distribution with MRI: a randomised study in healthy subjects. British Journal of Nutrition, 2016, 115, 903-912.	2.3	20
134	Hyperpolarized 13C urea myocardial first-pass perfusion imaging using velocity-selective excitation. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 46.	3.3	20
135	Bayesian intravoxel incoherent motion parameter mapping in the human heart. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 85.	3.3	20
136	Direct comparison of in vivo versus postmortem secondâ€order motion ompensated cardiac diffusion tensor imaging. Magnetic Resonance in Medicine, 2018, 79, 2265-2276.	3.0	20
137	Calibration of echo-planar 2D-selective RF excitation pulses. Magnetic Resonance in Medicine, 2004, 52, 1136-1145.	3.0	19
138	A multisample dissolution dynamic nuclear polarization system for serial injections in small animals. Magnetic Resonance in Medicine, 2017, 77, 904-910.	3.0	19
139	Three-dimensional alignment of the aggregated myocytes in the normal and hypertrophic murine heart. Journal of Applied Physiology, 2009, 107, 921-927.	2.5	18
140	Low-dose CT coronary angiography for the prediction of myocardial ischaemia. European Radiology, 2010, 20, 56-64.	4.5	18
141	Nanometer size silicon particles for hyperpolarized MRI. Scientific Reports, 2017, 7, 7946.	3.3	18
142	Analysis and improvement of motion encoding in magnetic resonance elastography. NMR in Biomedicine, 2018, 31, e3908.	2.8	18
143	Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 103.	3.3	18
144	Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications – Considerations on particle size, functionalization and polarization loss. Journal of Magnetic Resonance, 2018, 286, 42-51.	2.1	18

#	Article	IF	CITATIONS
145	Quantitative assessment of ventricular function using threeâ€dimensional SSFP magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 2007, 26, 288-295.	3.4	17
146	Measurement of left ventricular dimensions with contrast-enhanced three-dimensional cine imaging facilitated by k-t SENSE. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 27.	3.3	17
147	Effect of improving spatial or temporal resolution on image quality and quantitative perfusion assessment with <i>kâ€t</i> SENSE acceleration in firstâ€pass CMR myocardial perfusion imaging. Magnetic Resonance in Medicine, 2010, 64, 1616-1624.	3.0	17
148	High spatial resolution myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance using k–t SENSE. International Journal of Cardiology, 2012, 158, 411-416.	1.7	17
149	Cardiac proton spectroscopy using large coil arrays. NMR in Biomedicine, 2013, 26, 276-284.	2.8	17
150	Accelerating hyperpolarized metabolic imaging of the heart by exploiting spatiotemporal correlations. NMR in Biomedicine, 2013, 26, 1380-1386.	2.8	17
151	Fiber upâ€sampling and quality assessment of tractograms – towards quantitative brain connectivity. Brain and Behavior, 2017, 7, e00588.	2.2	17
152	Accelerating 4 <scp>D</scp> flow <scp>MRI</scp> by exploiting lowâ€rank matrix structure and hadamard sparsity. Magnetic Resonance in Medicine, 2017, 78, 1330-1341.	3.0	17
153	Toward true 3D visualization of active catheters using compressed sensing. Magnetic Resonance in Medicine, 2009, 62, 341-347.	3.0	16
154	Image fusion of coronary CT angiography and cardiac perfusion MRI: a pilot study. European Radiology, 2010, 20, 1174-1179.	4.5	16
155	Metabolic MR imaging of regional triglyceride and creatine content in the human heart. Magnetic Resonance in Medicine, 2012, 68, 1696-1704.	3.0	16
156	Group sparse reconstruction using intensityâ€based clustering. Magnetic Resonance in Medicine, 2013, 69, 1169-1179.	3.0	16
157	Three-dimensional balanced steady state free precession myocardial perfusion cardiovascular magnetic resonance at 3T using dual-source parallel RF transmission: initial experience. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 90.	3.3	16
158	Compensation of signal loss due to cardiac motion in pointâ€resolved spectroscopy of the heart. Magnetic Resonance in Medicine, 2014, 72, 1201-1207.	3.0	16
159	Emulsion Stability Modulates Gastric Secretion and Its Mixing with Emulsified Fat in Healthy Adults in a Randomized Magnetic Resonance Imaging Study. Journal of Nutrition, 2016, 146, 2158-2164.	2.9	16
160	Analysis of spatiotemporal fidelity in quantitative 3D first-pass perfusion cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 11.	3.3	16
161	On probing intravoxel incoherent motion in the heartâ€spinâ€echo versus stimulatedâ€echo DWI. Magnetic Resonance in Medicine, 2019, 82, 1150-1163.	3.0	16
162	Improved Segmentation and Detection Sensitivity of Diffusion-weighted Stroke Lesions with Synthetically Enhanced Deep Learning. Radiology: Artificial Intelligence, 2020, 2, e190217.	5.8	16

#	Article	IF	CITATIONS
163	A CMR study of the effects of tissue edema and necrosis on left ventricular dyssynchrony in acute myocardial infarction: implications for cardiac resynchronization therapy. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 47.	3.3	15
164	Quantitative three-dimensional myocardial perfusion cardiovascular magnetic resonance with accurate two-dimensional arterial input function assessment. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 108.	3.3	15
165	Accelerated cardiac perfusion imaging using <i>k</i> â€ <i>t</i> SENSE with SENSE training. Magnetic Resonance in Medicine, 2009, 62, 955-965.	3.0	14
166	Performance of Simultaneous Cardiac-Respiratory Self-gated Three-dimensional MR Imaging of the Heart: Initial Experience. Radiology, 2010, 255, 909-916.	7.3	14
167	Quantitative myocardial first-pass cardiovascular magnetic resonance perfusion imaging using hyperpolarized [1-13C] pyruvate. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 73.	3.3	14
168	Cardiovascular magnetic resonance T2* mapping for structural alterations in hypertrophic cardiomyopathy. European Journal of Radiology Open, 2019, 6, 78-84.	1.6	14
169	Coil setup optimization for 2D-SENSE whole-heart coronary imaging. Magnetic Resonance in Medicine, 2006, 55, 460-464.	3.0	13
170	Feasibility of k-t BLAST For BOLD fMRI With a Spin-Echo Based Acquisition at 3 T and 7 T. Investigative Radiology, 2009, 44, 495-502.	6.2	13
171	Hybrid cardiac magnetic resonance/computed tomographic imaging: first fusion of three-dimensional magnetic resonance perfusion and low-dose coronary computed tomographic angiography. European Heart Journal, 2011, 32, 2625-2625.	2.2	13
172	Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 62.	3.3	13
173	Robust myocardial T ₂ and T ₂ * mapping at 3T using imageâ€based shimming. Journal of Magnetic Resonance Imaging, 2015, 41, 1013-1020.	3.4	13
174	Cardiovascular magnetic resonance for the assessment of coronary artery disease. International Journal of Cardiology, 2015, 193, 84-92.	1.7	13
175	Fusion of CT coronary angiography and whole-heart dynamic 3D cardiac MR perfusion: building a framework for comprehensive cardiac imaging. International Journal of Cardiovascular Imaging, 2018, 34, 649-660.	1.5	13
176	Encoding and readout strategies in magnetic resonance elastography. NMR in Biomedicine, 2018, 31, e3919.	2.8	13
177	Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging. Journal of Magnetic Resonance Imaging, 2021, 53, 73-82.	3.4	13
178	Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging. Radiology, 2021, 299, 86-96.	7.3	13
179	Thrombus formation in the left ventricle after large myocardial infarction – assessment with cardiac magnetic resonance imaging. Swiss Medical Weekly, 2015, 145, w14122.	1.6	13
180	Retrospective Respiratory Motion Correction for Navigated Cine Velocity Mapping. Journal of Cardiovascular Magnetic Resonance, 2004, 6, 785-792.	3.3	12

#	Article	IF	CITATIONS
181	Assessing arterial blood flow and vessel area variations using real-time zonal phase-contrast MRI. Journal of Magnetic Resonance Imaging, 2006, 23, 422-429.	3.4	12
182	High-Resolution Complementary Spatial Modulation of Magnetization (CSPAMM) Rat Heart Tagging on a 1.5 Tesla Clinical Magnetic Resonance System. Investigative Radiology, 2007, 42, 204-210.	6.2	12
183	3D Fusion of Functional Cardiac Magnetic Resonance Imaging and Computed Tomography Coronary Angiography. Investigative Radiology, 2011, 46, 331-340.	6.2	12
184	Undersampled Cine 3D tagging for rapid assessment of cardiac motion. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 66.	3.3	12
185	Three-dimensional whole-heart vs. two-dimensional high-resolution perfusion-CMR: a pilot study comparing myocardial ischaemic burden. European Heart Journal Cardiovascular Imaging, 2016, 17, 900-908.	1.2	12
186	Exploiting Endogenous Surface Defects for Dynamic Nuclear Polarization of Silicon Micro- and Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 25668-25680.	3.1	12
187	The growth and evolution of cardiovascular magnetic resonance: a 20-year history of the Society for Cardiovascular Magnetic Resonance (SCMR) annual scientific sessions. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 8.	3.3	12
188	A spin-thermodynamic approach to characterize spin dynamics in TEMPO-based samples for dissolution DNP at 7â€⊤ field. Journal of Magnetic Resonance, 2019, 303, 91-104.	2.1	12
189	5D Flow Tensor MRI to Efficiently Map Reynolds Stresses of Aortic Blood Flow In-Vivo. Scientific Reports, 2019, 9, 18794.	3.3	12
190	On the limitations of echo planar 4D flow MRI. Magnetic Resonance in Medicine, 2020, 84, 1806-1816.	3.0	12
191	Highâ€resolution hyperpolarized metabolic imaging of the rat heart using <i>k</i> – <i>t</i> PCA and <i>k</i> – <i>t</i> SPARSE. NMR in Biomedicine, 2018, 31, e3876.	2.8	11
192	Left ventricular blood flow patterns at rest and under dobutamine stress in healthy pigs. NMR in Biomedicine, 2019, 32, e4022.	2.8	11
193	Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain: Analysis of cancer and acute stroke. Medical Image Analysis, 2021, 73, 102144.	11.6	11
194	A Multimodal Database for the 1 st Cardiac Motion Analysis Challenge. Lecture Notes in Computer Science, 2012, , 33-44.	1.3	11
195	Single breath-hold extended free-breathing navigator-gated three-dimensional coronary MRA. Journal of Magnetic Resonance Imaging, 2002, 15, 210-214.	3.4	10
196	Freeâ€breathing 3D wholeâ€heart blackâ€blood imaging with motion sensitized driven equilibrium. Journal of Magnetic Resonance Imaging, 2012, 36, 379-386.	3.4	10
197	Arterial, Venous, and Cerebrospinal Fluid Flow: Simultaneous Assessment with Bayesian Multipoint Velocity-encoded MR Imaging. Radiology, 2014, 270, 566-573.	7.3	10
198	Quantitative comparison of 2D and 3D late gadolinium enhancement MR imaging in patients with Fabry disease and hypertrophic cardiomyopathy. International Journal of Cardiology, 2016, 217, 167-173.	1.7	10

#	Article	IF	CITATIONS
199	Simultaneous multislice tripleâ€echo steadyâ€state (<scp>SMSâ€TESS</scp>) T ₁ , T ₂ , PD, and offâ€resonance mapping in the human brain. Magnetic Resonance in Medicine, 2018, 80, 1088-1100.	3.0	10
200	Right ventricular outflow tract dimensions in arrhythmogenic right ventricular cardiomyopathy/dysplasia—a multicentre study comparing echocardiography and cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2018, 19, 516-523.	1.2	10
201	Investigation of Neurodegenerative Processes in Amyotrophic Lateral Sclerosis Using White Matter Fiber Density. Clinical Neuroradiology, 2019, 29, 493-503.	1.9	10
202	Comparative study of FAST gradient echo MRI sequences: Phantom study. Journal of Magnetic Resonance Imaging, 2004, 20, 1030-1038.	3.4	9
203	Oral Administration of 17β-Estradiol Over 3 Months Without Progestin Co-Administration Does Not Improve Coronary Flow Reserve in Post-Menopausal Women: A Randomized Placebo-Controlled Cross-Over CMR Study. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 665-672.	3.3	9
204	Developing Hyperpolarized 13C Spectroscopy and Imaging for Metabolic Studies in the Isolated Perfused Rat Heart. Applied Magnetic Resonance, 2012, 43, 275-288.	1.2	9
205	In vivo myofibre architecture in the systemic right ventricle. European Heart Journal, 2013, 34, 3640-3640.	2.2	9
206	Radial <i>kâ€ŧ</i> SPIRiT: Autocalibrated parallel imaging for generalized phase ontrast MRI. Magnetic Resonance in Medicine, 2014, 72, 1233-1245.	3.0	9
207	Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images. Medical Image Analysis, 2017, 39, 56-77.	11.6	9
208	Multi-centre study of whole-heart dynamic 3D cardiac magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: gender based analysis of diagnostic performance. European Heart Journal Cardiovascular Imaging, 2017, 18, 1099-1106.	1.2	9
209	Myocardial triglycerides in cardiac amyloidosis assessed by proton cardiovascular magnetic resonance spectroscopy. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 10.	3.3	9
210	Analysis and correction of offâ€resonance artifacts in echoâ€planar cardiac diffusion tensor imaging. Magnetic Resonance in Medicine, 2020, 84, 2561-2576.	3.0	9
211	CMR Diffusion Tensor Imaging Provides Novel Imaging Markers of Adverse Myocardial Remodeling in Aortic Stenosis. JACC: Cardiovascular Imaging, 2021, 14, 1472-1474.	5.3	9
212	A Multi-scale Feature Based Optic Flow Method for 3D Cardiac Motion Estimation. Lecture Notes in Computer Science, 2009, , 588-599.	1.3	9
213	Combining cardiac magnetic resonance and computed tomography coronary calcium scoring: added value for the assessment of morphological coronary disease?. International Journal of Cardiovascular Imaging, 2011, 27, 969-977.	1.5	8
214	Analysis of 3D cardiac deformations with 3D SinMod. , 2013, 2013, 4386-9.		8
215	Algebraic reconstruction technique for parallel imaging reconstruction of undersampled radial data: Application to cardiac cine. Magnetic Resonance in Medicine, 2015, 73, 1643-1653.	3.0	8
216	Hemodynamic Changes in the Right Ventricle Induced by Variations of Cardiac Output: A Possible Mechanism for Arrhythmia Occurrence in the Outflow Tract. Scientific Reports, 2019, 9, 100.	3.3	8

#	Article	IF	CITATIONS
217	On the limitations of partial Fourier acquisition in phaseâ€contrast MRI of turbulent kinetic energy. Magnetic Resonance in Medicine, 2019, 81, 514-523.	3.0	8
218	Navigatorâ€free metabolite•ycled proton spectroscopy of the heart. Magnetic Resonance in Medicine, 2020, 83, 795-805.	3.0	8
219	Novel Magnetic Resonance Late Gadolinium Enhancement With Fixed Short Inversion Time in Ischemic Myocardial Scars. Investigative Radiology, 2020, Publish Ahead of Print, 445-450.	6.2	8
220	Cardiovascular magnetic resonance T2* mapping for the assessment of cardiovascular events in hypertrophic cardiomyopathy. Open Heart, 2020, 7, e001152.	2.3	8
221	Comparison of kâ€ŧ SENSE/kâ€ŧ BLAST with conventional SENSE applied to BOLD fMRI. Journal of Magnetic Resonance Imaging, 2010, 32, 235-241.	3.4	7
222	Accelerated 3D catheter visualization from triplanar MR projection images. Magnetic Resonance in Medicine, 2010, 64, 167-176.	3.0	7
223	Pulmonary Perfusion Imaging. Journal of the American College of Cardiology, 2012, 60, 2335-2337.	2.8	7
224	Improved fat water separation with water selective inversion pulse for inversion recovery imaging in cardiac MRI. Journal of Magnetic Resonance Imaging, 2013, 37, 484-490.	3.4	7
225	Cardiovascular magnetic resonance profiling of coronary atherosclerosis: vessel wall remodelling and related myocardial blood flow alterations. European Heart Journal Cardiovascular Imaging, 2014, 15, 1400-1410.	1.2	7
226	Secondâ€order motion compensated <scp>PRESS</scp> for cardiac spectroscopy. Magnetic Resonance in Medicine, 2017, 77, 57-64.	3.0	7
227	Enhancing intravoxel incoherent motion parameter mapping in the brain using <i>k</i> â€ <i>b</i> PCA. NMR in Biomedicine, 2018, 31, e4008.	2.8	7
228	Motionâ€Induced Signal Loss in In Vivo Cardiac Diffusionâ€Weighted Imaging. Journal of Magnetic Resonance Imaging, 2020, 51, 319-320.	3.4	7
229	Effect of intracoronary bone marrow-derived mononuclear cell injection early and late after myocardial infarction on CMR-derived myocardial strain. International Journal of Cardiology, 2020, 310, 108-115.	1.7	7
230	Spatial Resolution and the Magnitude of Infarct Volume Measurement Error in DWI in Acute Ischemic Stroke. American Journal of Neuroradiology, 2020, 41, 792-797.	2.4	7
231	Fundamentals of turbulent flow spectrum imaging. Magnetic Resonance in Medicine, 2022, 87, 1231-1249.	3.0	7
232	¹⁹ F MR Imaging Golden Angle–based Capsule Tracking for Intestinal Transit and Catheter Tracking: Initial in Vivo Experience. Radiology, 2012, 265, 917-925.	7.3	6
233	Closed-chest small animal model to study myocardial infarction in an MRI environment in real time. International Journal of Cardiovascular Imaging, 2015, 31, 115-121.	1.5	6
234	Accelerating MRI fat quantification using a signal model-based dictionary to assess gastric fat volume and distribution of fat fraction. Magnetic Resonance Imaging, 2017, 37, 81-89.	1.8	6

#	Article	IF	CITATIONS
235	3D image fusion of wholeâ€heart dynamic cardiac MR perfusion and late gadolinium enhancement: Intuitive delineation of myocardial hypoperfusion and scar. Journal of Magnetic Resonance Imaging, 2018, 48, 1129-1138.	3.4	6
236	Cardiac- versus diaphragm-based respiratory navigation for proton spectroscopy of the heart. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 259-268.	2.0	6
237	Accelerating CEST MRI in the mouse brain at 9.4 T by exploiting sparsity in the Z â€spectrum domain. NMR in Biomedicine, 2020, 33, e4360.	2.8	6
238	Are We There Yet?. JACC: Cardiovascular Imaging, 2021, 14, 1755-1757.	5.3	6
239	Cardiac magnetic resonance imaging to detect ischemia in chronic coronary syndromes: state of the art. Kardiologia Polska, 2019, 77, 1123-1133.	0.6	6
240	3D Medical Image Synthesis by Factorised Representation and Deformable Model Learning. Lecture Notes in Computer Science, 2019, , 110-119.	1.3	6
241	In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI. PLoS ONE, 2021, 16, e0258965.	2.5	6
242	Role of sex hormones in modulating myocardial perfusion and coronary flow reserve. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2209-2218.	6.4	6
243	Segmental strain for scar detection in acute myocardial infarcts and in follow-up exams using non-contrast CMR cine sequences. BMC Cardiovascular Disorders, 2022, 22, 226.	1.7	6
244	Improved artery delineation in dual-stack coronary magnetic resonance angiography using parallel imaging at 3 T. Journal of Magnetic Resonance Imaging, 2005, 21, 443-448.	3.4	5
245	Linear response equilibrium. Journal of Magnetic Resonance, 2006, 178, 142-154.	2.1	5
246	Altered Myocardial Motion Pattern in Fabry Patients Assessed with CMR-Tagging. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 891-898.	3.3	5
247	Optimization of onâ€resonant magnetization transfer contrast in coronary vein MRI. Magnetic Resonance in Medicine, 2010, 64, 1849-1854.	3.0	5
248	High resolution 3D cardiac perfusion imaging using compartment-based k-t PCA. , 2010, 2010, 21-4.		5
249	A gâ€factor metric for kâ€tâ€GRAPPA―and PEAKâ€CRAPPAâ€based parallel imaging. Magnetic Resonance in Medicine, 2015, 74, 125-135.	3.0	5
250	First fusion and combined evaluation of 3D-CMR perfusion with 3D-MR coronary angiography. International Journal of Cardiology, 2016, 202, 62-63.	1.7	5
251	Assessing the influence of isoflurane anesthesia on cardiac metabolism using hyperpolarized [1â€ ¹³ C]pyruvate. NMR in Biomedicine, 2018, 31, e3856.	2.8	5
252	Retrospective phaseâ€based gating for cardiac proton spectroscopy with fixed scan time. Journal of Magnetic Resonance Imaging, 2019, 50, 1973-1981.	3.4	5

#	Article	IF	CITATIONS
253	Validation of Finite Element Image Registrationâ€based Cardiac Strain Estimation from Magnetic Resonance Images. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900418.	0.2	5
254	Toward an accurate estimation of wall shear stress from 4D flow magnetic resonance downstream of a severe stenosis. Magnetic Resonance in Medicine, 2021, 86, 1531-1543.	3.0	5
255	A 3D personalized cardiac myocyte aggregate orientation model using MRI data-driven low-rank basis functions. Medical Image Analysis, 2021, 71, 102064.	11.6	5
256	MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods. PLoS ONE, 2016, 11, e0153736.	2.5	5
257	Direct comparison of gradient Fidelity and acoustic noise of the same <scp>MRI</scp> system at <scp>3ÂT</scp> and 0. <scp>75 T</scp> . Magnetic Resonance in Medicine, 2022, 88, 1937-1947.	3.0	5
258	Pathophysiology of LV Remodeling Following STEMI. JACC: Cardiovascular Imaging, 2023, 16, 159-171.	5.3	5
259	Accelerated parallel imaging by transform coding data compression with k-t SENSE. , 2006, 2006, 372.		4
260	Pre- and post-operative assessment of valvular and aortic flow using 4D flow magnetic resonance imaging. European Heart Journal, 2013, 34, 1423-1423.	2.2	4
261	Monitoring and compensating phase imperfections in cine balanced steadyâ€state free precession. Magnetic Resonance in Medicine, 2013, 70, 1567-1579.	3.0	4
262	Hurricane aorta. Lancet, The, 2014, 384, 2141.	13.7	4
263	A gâ€factor metric for kâ€t SENSE and kâ€t PCA based parallel imaging. Magnetic Resonance in Medicine, 2016, 75, 562-571.	3.0	4
264	Unipolar MR elastography: Theory, numerical analysis and implementation. NMR in Biomedicine, 2020, 33, e4138.	2.8	4
265	Motion and eddy current–induced signal dephasing in in vivo cardiac DTI. Magnetic Resonance in Medicine, 2020, 84, 277-288.	3.0	4
266	2D high resolution vs. 3D whole heart myocardial perfusion cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2022, 23, 811-819.	1.2	4
267	Simultaneous Denoising and Registration forÂAccurate Cardiac Diffusion Tensor Reconstruction from MRI. Lecture Notes in Computer Science, 2015, , 215-222.	1.3	4
268	Rapid inference of personalised left-ventricular meshes by deformation-based differentiable mesh voxelization. Medical Image Analysis, 2022, 79, 102445.	11.6	4
269	Realâ€Time Multipoint Gastrointestinal 19â€Fluorine Catheter Tracking. Magnetic Resonance in Medicine, 2014, 71, 302-307.	3.0	3
270	Temporal Interpolation of Abdominal MRIs Acquired During Free-Breathing. Lecture Notes in Computer Science, 2017, , 359-367.	1.3	3

#	Article	IF	CITATIONS
271	Uniformity and Deviation of Intra-axonal Cross-sectional Area Coverage of the Gray-to-White Matter Interface. Frontiers in Neuroscience, 2017, 11, 729.	2.8	3
272	Reducing Navigators in Free-Breathing Abdominal MRI via Temporal Interpolation Using Convolutional Neural Networks. IEEE Transactions on Medical Imaging, 2018, 37, 2333-2343.	8.9	3
273	Extended quantitative dynamic contrastâ€enhanced cardiac perfusion imaging in mice using accelerated data acquisition and spatially distributed, twoâ€compartment exchange modeling. NMR in Biomedicine, 2019, 32, e4123.	2.8	3
274	Multimodal Multiparametric Three-dimensional Image Fusion in Coronary Artery Disease: Combining the Best of Two Worlds. Radiology: Cardiothoracic Imaging, 2020, 2, e190116.	2.5	3
275	Joint image and field map estimation for multiâ€echo hyperpolarized 13 C metabolic imaging of the heart. Magnetic Resonance in Medicine, 2021, 86, 258-276.	3.0	3
276	Simulation of intravoxel incoherent perfusion signal using a realistic capillary network of a mouse brain. NMR in Biomedicine, 2021, 34, e4528.	2.8	3
277	Septaly Oriented Mild Aortic Regurgitant Jets Negatively Influence Left Ventricular Blood Flow—Insights From 4D Flow MRI Animal Study. Frontiers in Cardiovascular Medicine, 2021, 8, 711099.	2.4	3
278	Cardiac Fibers Estimation from Arbitrarily Spaced Diffusion Weighted MRI. Lecture Notes in Computer Science, 2015, , 198-206.	1.3	3
279	Synthetically trained convolutional neural networks for improved tensor estimation from free-breathing cardiac DTI. Computerized Medical Imaging and Graphics, 2022, 99, 102075.	5.8	3
280	Freeâ€breathing motionâ€informed locally lowâ€rank quantitative 3D myocardial perfusion imaging. Magnetic Resonance in Medicine, 2022, 88, 1575-1591.	3.0	3
281	CORONARY FLOW QUANTIFICATION BY FOURIER VELOCITY ENCODED MRI. Biomedizinische Technik, 2002, 47, 412-415.	0.8	2
282	The MR-stethoscope: safe cardiac gating free of interference with electro-magnetic fields at 1.5 T, 3.0 T and 7.0 T. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	2
283	Coronary artery plaques and myocardial ischaemia. European Radiology, 2011, 21, 1628-1634.	4.5	2
284	Cardiac self-gating using blind source separation for 2D cine cardiovascular magnetic resonance imaging. Magnetic Resonance Imaging, 2021, 81, 42-52.	1.8	2
285	Detection of Intramyocardial Iron in Patients Following ST â€Elevation Myocardial Infarction Using Cardiac Diffusion Tensor Imaging. Journal of Magnetic Resonance Imaging, 2022, , .	3.4	2
286	Validation of cardiac diffusion tensor imaging sequences: A multicentre test–retest phantom study. NMR in Biomedicine, 2022, 35, e4685.	2.8	2
287	Comparison of interpolation methods of predominant cardiomyocyte orientation from in vivo and ex vivo cardiac diffusion tensor imaging data. NMR in Biomedicine, 2022, 35, e4667.	2.8	2
288	Metabolite ycled echoâ€planar spectroscopic imaging ofÂtheÂhuman heart. Magnetic Resonance in Medicine, 2022, 88, 1516-1527.	3.0	2

#	Article	IF	CITATIONS
289	In vivo comparison of DENSE and CSPAMM for cardiac motion analysis. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	1
290	Highly efficient respiratory gating in coronary MR employing non-rigid retrospective motion correction. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	3.3	1
291	Spatio-temporally constrained reconstruction for highly accelerated flow MRI. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	3.3	1
292	A robust comparison approach of velocity data between MRI and CFD based on divergence-free space projection. , 2015, , .		1
293	Direct comparison of in-vivo and post-mortem spin-echo based diffusion tensor imaging in the porcine heart. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P76.	3.3	1
294	A Partial Domain Approach to Enable Aortic Flow Simulation Without Turbulent Modeling. Lecture Notes in Computer Science, 2015, , 544-551.	1.3	1
295	Second order motion compensated spin echo cardiac diffusion tensor imaging on clinical MR systems. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P61.	3.3	1
296	Exploiting multicompartment effects in tripleâ€echo steadyâ€state T ₂ mapping for fat fraction quantification. Magnetic Resonance in Medicine, 2018, 79, 423-429.	3.0	1
297	Production of highly polarized [1â€ ¹³ C]acetate by rapid decarboxylation of [2â€ ¹³ C]pyruvate – application to hyperpolarized cardiac spectroscopy and imaging. Magnetic Resonance in Medicine, 2019, 82, 1140-1149.	3.0	1
298	Long-Range Decoder Skip Connections: Exploiting Multi-Context Information for Cardiac Image Segmentation. , 2019, , .		1
299	Parametric mapping CMR for the measurement of inflammatory reactions of the pericardium. Open Heart, 2022, 9, e001919.	2.3	1
300	Myocardial T2* mapping free of distortion using susceptibility weighted spin-echo based imaging: a feasibility study. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
301	First-pass myocardial perfusion assessment using eight-fold accelerated k-t BLAST stress DCE-MRI with rapid parametric mapping. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
302	k-t SENSE-accelerated myocardial perfusion MR imaging at 3.0 Tesla – comparison with pressure wire measurement of fractional flow reserve. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
303	Left ventricular dyssynchrony in patients with left bundle branch block and patients after myocardial infarction using 3D MR tagging. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
304	Three-dimensional measurement of LV and RV dimensions using prospective self-gating for simultaneous compensation of cardiac and respiratory motion. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
305	Endocardial to epicardial perfusion ratios at rest and stress determined by perfusion-CMR. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
306	Detection of haemodynamically significant coronary stenoses with k-t SENSE-accelerated Myocardial Perfusion MR Imaging at 3.0 Tesla - a comparison with fractional flow reserve. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	3.3	0

#	Article	IF	CITATIONS
307	Highly accelerated high spatial resolution myocardial perfusion imaging. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	3.3	0
308	Three-dimensional contrast-enhanced and non-contrast-enhanced cardiac magnetic resonance imaging for the assessment of myocardial ischemic reactions. Journal of Nuclear Cardiology, 2011, 18, 937-951.	2.1	0
309	Linear Response Equilibrium versus echo-planar encoding for fast high-spatial resolution 3D chemical shift imaging. Journal of Magnetic Resonance, 2011, 211, 80-88.	2.1	0
310	Validation of dynamic three-dimensional whole heart magnetic resonance myocardial perfusion imaging at 3.0 Tesla against fractional flow reserve for the detection of flow-limiting coronary heart disease. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	0
311	First pass vasodilator-stress myocardial perfusion CMR in mice on a whole-body 3Tesla scanner: validation against microspheres. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	0
312	Multi-echo single-shot EPI for hyperpolarized 13C cardiac metabolic imaging of small animals. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P217.	3.3	0
313	Whole-heart first-pass myocardial perfusion imaging with non-rigid respiratory motion correction. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P176.	3.3	0
314	Multimodal functional evaluation of severe kinking of an ascending aortic prosthesis in a patient with embolic stroke. European Heart Journal, 2014, 35, 1294-1294.	2.2	0
315	021â€Perfusion cardiovascular magnetic resonance (CMR) – can david (resolution) take on goliath (coverage) again?. Heart, 2017, 103, A17.2-A18.	2.9	0
316	Accuracy of dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease in patients with reduced ejection fraction. Imaging, 2021, 13, 61-68.	0.3	0
317	Quantitative myocardial firstâ€pass perfusion imaging of CO 2 â€induced vasodilation in rats. NMR in Biomedicine, 2021, 34, e4593.	2.8	0