Bart H Mcguyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/896442/publications.pdf

Version: 2024-02-01

26 papers 448 citations

933447 10 h-index 713466 21 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

times ranked

26

491 citing authors

#	Article	IF	CITATIONS
1	Connection between Antennas, Beam Steering, and the Moiré Effect. Physical Review Applied, 2022, 17, .	3.8	1
2	Flat-Panel Mechanical Beam Steerable Array Antennas With In-Plane Rotations: Theory, Design and Low-Cost Implementation. IEEE Open Journal of Antennas and Propagation, 2021, 2, 679-688.	3.7	6
3	Control of Ultracold Photodissociation with Magnetic Fields. Physical Review Letters, 2018, 120, 033201.	7.8	10
4	Experimental and theoretical investigation of the crossover from the ultracold to the quasiclassical regime of photodissociation. Physical Review A, 2018, 98, .	2.5	3
5	Crossover from the Ultracold to the Quasiclassical Regime in State-Selected Photodissociation. Physical Review Letters, 2018, 121, 143401.	7.8	8
6	Note: Investigation of a Marx generator imitating a Tesla transformer. Review of Scientific Instruments, 2018, 89, 086102.	1.3	0
7	Photodissociation of ultracold diatomic strontium molecules with quantum state control. Nature, 2016, 535, 122-126.	27.8	53
8	A broadband chip-scale optical frequency synthesizer at 2.7 \tilde{A} — 10 ^{\hat{a}°16} relative uncertainty. Science Advances, 2016, 2, e1501489.	10.3	65
9	Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules. Physical Review Letters, 2015, 115, 053001.	7.8	22
10	Thermometry via Light Shifts in Optical Lattices. Physical Review Letters, 2015, 114, 023001.	7.8	33
11	High-precision spectroscopy of ultracold molecules in an optical lattice. New Journal of Physics, 2015, 17, 055004.	2.9	31
12	Precise study of asymptotic physics with subradiant ultracold molecules. Nature Physics, 2015, 11, 32-36.	16.7	89
13	Paul Drude's Prediction of Nonreciprocal Mutual Inductance for Tesla Transformers. PLoS ONE, 2014, 9, e115397.	2.5	O
14	Visible optical beats at the hertz level. American Journal of Physics, 2014, 82, 1003-1005.	0.7	5
15	Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions. Physical Review A, 2013, 87, .	2.5	5
16	Nonadiabatic Effects in Ultracold Molecules via Anomalous Linear and Quadratic Zeeman Shifts. Physical Review Letters, 2013, 111, 243003.	7.8	33
17	Collision kernels from velocity-selective optical pumping with magnetic depolarization. Physical Review A, 2013, 87, .	2.5	5
18	Cusp Kernels for Velocity-Changing Collisions. Physical Review Letters, 2012, 108, 183202.	7.8	14

#	Article	IF	CITATIONS
19	SYMMETRY AND VOLTMETERS. American Journal of Physics, 2012, 80, 101-101.	0.7	2
20	Spin-velocity correlations of optically pumped atoms. Physical Review A, 2012, 86, .	2.5	4
21	Nonlinear pressure shifts of alkali-metal atoms in Xenon. , 2011, , .		O
22	Temperature-insensitive laser frequency locking near absorption lines. Review of Scientific Instruments, 2011, 82, 033114.	1.3	5
23	Hyperfine frequencies of <mml:msup><mml:mrow></mml:mrow><mml:mn>87</mml:mn></mml:msup> /mml:mn>/mml:msup>Rb and 		