
Atsushi Kuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/896377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of Manganese Superoxide Dismutase by Nuclear Translocation and Activation of SIRT1 Promotes Cell Survival in Chronic Heart Failure. Journal of Biological Chemistry, 2010, 285, 8375-8382.	3.4	308
2	Regulation of FOXOs and p53 by SIRT1 Modulators under Oxidative Stress. PLoS ONE, 2013, 8, e73875.	2.5	284
3	Resveratrol Ameliorates Muscular Pathology in the Dystrophic <i>mdx</i> Mouse, a Model for Duchenne Muscular Dystrophy. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 784-794.	2.5	134
4	Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts. Physiological Reports, 2018, 6, e13741.	1.7	118
5	Cellular and molecular effects of sirtuins in health and disease. Clinical Science, 2011, 121, 191-203.	4.3	116
6	Empagliflozin, an SGLT2 Inhibitor, Reduced the Mortality Rate after Acute Myocardial Infarction with Modification of Cardiac Metabolomes and Antioxidants in Diabetic Rats. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 524-534.	2.5	82
7	Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. Journal of Neuro-Oncology, 2015, 122, 11-20.	2.9	81
8	Translocation of Glycogen Synthase Kinase-3β (GSK-3β), a Trigger of Permeability Transition, Is Kinase Activity-dependent and Mediated by Interaction with Voltage-dependent Anion Channel 2 (VDAC2). Journal of Biological Chemistry, 2014, 289, 29285-29296.	3.4	80
9	Resveratrol Decreases Oxidative Stress by Restoring Mitophagy and Improves the Pathophysiology of Dystrophin-Deficient <i>mdx</i> Mice. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	4.0	77
10	Resveratrol Improves Cardiomyopathy in Dystrophin-deficient Mice through SIRT1 Protein-mediated Modulation of p300 Protein*. Journal of Biological Chemistry, 2013, 288, 5963-5972.	3.4	73
11	Role of ER Stress in Ventricular Contractile Dysfunction in Type 2 Diabetes. PLoS ONE, 2012, 7, e39893.	2.5	62
12	Short Communication: Angiotensin II Type 1 Receptor–Mediated Upregulation of Calcineurin Activity Underlies Impairment of Cardioprotective Signaling in Diabetic Hearts. Circulation Research, 2010, 106, 129-132.	4.5	60
13	Resveratrol Ameliorates Mitophagy Disturbance and Improves Cardiac Pathophysiology of Dystrophin-deficient mdx Mice. Scientific Reports, 2018, 8, 15555.	3.3	59
14	Inhibition of DPP-4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats. Cardiovascular Diabetology, 2015, 14, 103.	6.8	49
15	mTORC1 inhibition attenuates necroptosis through RIP1 inhibition-mediated TFEB activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165552.	3.8	42
16	Canagliflozin, a sodium–glucose cotransporterÂ2 inhibitor, normalizes renal susceptibility to typeÂ1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. Journal of Diabetes Investigation, 2019, 10, 933-946.	2.4	40
17	Suppression of autophagic flux contributes to cardiomyocyte death by activation of necroptotic pathways. Journal of Molecular and Cellular Cardiology, 2017, 108, 203-213.	1.9	34
18	Suppressed autophagic response underlies augmentation of renal ischemia/reperfusion injury by type 2 diabetes. Scientific Reports, 2017, 7, 5311.	3.3	29

Атѕиѕні Кимо

#	Article	IF	CITATIONS
19	The effects of resveratrol and SIRT1 activation on dystrophic cardiomyopathy. Annals of the New York Academy of Sciences, 2015, 1348, 46-54.	3.8	27
20	Different Antioxidative and Antiapoptotic Effects of Piceatannol and Resveratrol. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 385-396.	2.5	27
21	Differential Cell-Protective Function of Two Resveratrol (<i>Trans</i> -3,5,4′-trihydroxystilbene) Glucosides against Oxidative Stress. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 124-132.	2.5	25
22	SIRT1: A Novel Target for the Treatment of Muscular Dystrophies. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	25
23	Critical timing of mitochondrial K ATP channel opening for enhancement of myocardial tolerance against infarction. Basic Research in Cardiology, 2001, 96, 446-453.	5.9	24
24	Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart. Journal of Molecular and Cellular Cardiology, 2015, 80, 136-145.	1.9	24
25	Insufficient activation of Akt upon reperfusion because of its novel modification by reduced PP2A-B55α contributes to enlargement of infarct size by chronic kidney disease. Basic Research in Cardiology, 2017, 112, 31.	5.9	24
26	Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1130-H1142.	3.2	24
27	Empagliflozin attenuates acute kidney injury after myocardial infarction in diabetic rats. Scientific Reports, 2020, 10, 7238.	3.3	23
28	Blockade of Angiotensin II Type 1 Receptors Suppressed Free Radical Production and Preserved Coronary Endothelial Function in the Rabbit Heart After Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2002, 39, 49-57.	1.9	18
29	Does p53 Inhibition Suppress Myocardial Ischemia–Reperfusion Injury?. Journal of Cardiovascular Pharmacology and Therapeutics, 2018, 23, 350-357.	2.0	17
30	SIRT1 in the cardiomyocyte counteracts doxorubicin-induced cardiotoxicity via regulating histone H2AX. Cardiovascular Research, 2023, 118, 3360-3373.	3.8	17
31	SIRT1 deficiency interferes with membrane resealing after cell membrane injury. PLoS ONE, 2019, 14, e0218329.	2.5	16
32	Resveratrol improves motor function in patients with muscular dystrophies: an open-label, single-arm, phase IIa study. Scientific Reports, 2020, 10, 20585.	3.3	16
33	Chronic Treatment With an Erythropoietin Receptor Ligand Prevents Chronic Kidney Disease–Induced Enlargement of Myocardial Infarct Size. Hypertension, 2016, 68, 697-706.	2.7	14
34	Translational regulation by miR-301b upregulates AMP deaminase in diabetic hearts. Journal of Molecular and Cellular Cardiology, 2018, 119, 138-146.	1.9	14
35	Activation of the angiotensin II receptor promotes autophagy in renal proximal tubular cells and affords protection from ischemia/reperfusion injury. Journal of Pharmacological Sciences, 2021, 145, 187-197.	2.5	9
36	Xanthine oxidoreductase-mediated injury is amplified by upregulated AMP deaminase in type 2 diabetic rat hearts under the condition of pressure overload. Journal of Molecular and Cellular Cardiology, 2021, 154, 21-31.	1.9	7

#	Article	IF	CITATIONS
37	Aging-associated inflammation and fibrosis in arachnoid membrane. BMC Neurology, 2021, 21, 169.	1.8	3
38	Diabetes modulation of the myocardial infarction-acute kidney injury axis. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H394-H405.	3.2	1