
Ewa Dostatni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8963661/publications.pdf Version: 2024-02-01

Ενώλ Ποστατινί

#	Article	IF	CITATIONS
1	Digital Twins in Product Lifecycle for Sustainability in Manufacturing and Maintenance. Applied Sciences (Switzerland), 2021, 11, 31.	1.3	53
2	Al-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications. Materials, 2020, 13, 5437.	1.3	50
3	Improving the Skills and Knowledge of Future Designers in the Field of Ecodesign Using Virtual Reality Technologies. Procedia Computer Science, 2015, 75, 348-358.	1.2	32
4	Multi-agent system to support decision-making process in design for recycling. Soft Computing, 2016, 20, 4347-4361.	2.1	30
5	Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development. Materials, 2021, 14, 2737.	1.3	20
6	Application of the Theory of Constraints for Project Management. Management and Production Engineering Review, 2017, 8, 87-95.	1.4	19
7	Application of agent technology for recyclingâ€oriented product assessment. Industrial Management and Data Systems, 2013, 113, 817-839.	2.2	17
8	Multi-agent System to Support Decision-Making Process in Ecodesign. Advances in Intelligent Systems and Computing, 2015, , 463-474.	0.5	13
9	The Use of Machine Learning Method in Concurrent Ecodesign of Products and Technological Processes. Lecture Notes in Mechanical Engineering, 2018, , 321-330.	0.3	12
10	Ecodesign of Technological Processes with the Use of Decision Trees Method. Advances in Intelligent Systems and Computing, 2018, , 318-327.	0.5	10
11	Functionality Assessment of Ecodesign Support System. Management and Production Engineering Review, 2015, 6, 10-15.	1.4	9
12	Estimating the Cost of Product Recycling with the Use of Ecodesign Support System. Management and Production Engineering Review, 2016, 7, 33-39.	1.4	9
13	Traditional Artificial Neural Networks Versus Deep Learning in Optimization of Material Aspects of 3D Printing. Materials, 2021, 14, 7625.	1.3	5
14	Analysis of Selected IT Tools Supporting Eco-Design in the 3D CAD Environment. IEEE Access, 2021, 9, 134945-134956.	2.6	4
15	Reducing Waste in 3D Printing Using a Neural Network Based on an Own Elbow Exoskeleton. Materials, 2021, 14, 5074.	1.3	4
16	Automation and Digitization of the Material Selection Process for Ecodesign. Advances in Intelligent Systems and Computing, 2019, , 523-532.	0.5	4
17	A Semi-Automated 3D-Printed Chainmail Design Algorithm with Preprogrammed Directional Functions for Hand Exoskeleton. Applied Sciences (Switzerland), 2022, 12, 5007.	1.3	4
18	Artificial Neural Network-Supported Selection of Materials in Ecodesign. Lecture Notes in Mechanical Engineering, 2019, , 422-431.	0.3	3

Ewa Dostatni

#	Article	IF	CITATIONS
19	Automation of the Ecodesign Process for Industry 4.0. Advances in Intelligent Systems and Computing, 2019, , 533-542.	0.5	2
20	Decision Support on Product Using Environmental Attributes Implemented in PLM System. Advances in Intelligent Systems and Computing, 2018, , 275-284.	0.5	1
21	Product Variants Recycling Cost Estimation with the Use of Multi-agent Support System. Lecture Notes in Mechanical Engineering, 2018, , 311-320.	0.3	1
22	Modelling and Recycling-Oriented Assessment of Household Appliances. Advances in Intelligent Systems and Computing, 2018, , 306-315.	0.5	0
23	Inventive Methods in Designing an Environmentally Friendly Household Appliance. Lecture Notes in Electrical Engineering, 2019, , 347-353.	0.3	0
24	Comparison of Neural Networks Aiding Material Compatibility Assessment. Lecture Notes in Mechanical Engineering, 2022, , 14-24.	0.3	0
25	Ecological Activities of Manufacturing Companies in the Use and Recycling of Products. Lecture Notes in Mechanical Engineering, 2021, , 33-41.	0.3	0
26	Integrating the Assessment of Sustainability and an ERP System in Small and Medium Manufacturing Enterprise - A Case Study. Lecture Notes in Mechanical Engineering, 2022, , 50-60.	0.3	0