Hiroyuki Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8963610/publications.pdf

Version: 2024-02-01

471509 552781 73 933 17 h-index citations papers

g-index 74 74 74 788 docs citations times ranked citing authors all docs

26

#	Article	IF	CITATIONS
1	Mutation of luxS affects motility and infectivity of Helicobacter pylori in gastric mucosa of a Mongolian gerbil model. Journal of Medical Microbiology, 2006, 55, 1477-1485.	1.8	54
2	Chlamydia pneumoniae Infects and Multiplies in Lymphocytes In Vitro. Infection and Immunity, 2001, 69, 7753-7759.	2.2	53
3	<i>Chlamydia pneumoniae</i> li>Infection Induces Differentiation of Monocytes into Macrophages. Infection and Immunity, 2002, 70, 2392-2398.	2.2	53
4	Amoebal Endosymbiont Neochlamydia Genome Sequence Illuminates the Bacterial Role in the Defense of the Host Amoebae against Legionella pneumophila. PLoS ONE, 2014, 9, e95166.	2.5	46
5	Chlamydia pneumoniaeInfection of Alveolar Macrophages: A Model. Journal of Infectious Diseases, 2003, 187, 1107-1115.	4.0	42
6	Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles. Research in Microbiology, 2010, 161, 711-719.	2.1	34
7	Detection of Chlamydia pneumoniae antigenin PBMNCs of healthy blood donors. Transfusion, 2001, 41, 1114-1119.	1.6	29
8	Survival and transfer ability of phylogenetically diverse bacterial endosymbionts in environmental <i>Acanthamoeba</i> isolates. Environmental Microbiology Reports, 2010, 2, 524-533.	2.4	28
9	Novel <i>Parachlamydia acanthamoebae</i> Quantification Method Based on Coculture with Amoebae. Applied and Environmental Microbiology, 2008, 74, 6397-6404.	3.1	27
10	Frequency of Chlamydia trachomatis in Ureaplasma-positive healthy women attending their first prenatal visit in a community hospital in Sapporo, Japan. BMC Infectious Diseases, 2012, 12, 82.	2.9	26
11	Amoebal endosymbiont Neochlamydia protects host amoebae against Legionella pneumophila infection by preventing Legionella entry. Microbes and Infection, 2018, 20, 236-244.	1.9	25
12	AChlamydia pneumoniaeinfection model using established human lymphocyte cell lines. FEMS Microbiology Letters, 2002, 216, 229-234.	1.8	24
13	Environmental Chlamydiae Alter the Growth Speed and Motility of Host Acanthamoebae. Microbes and Environments, 2012, 27, 423-429.	1.6	22
14	Prevalence of viable Chlamydia pneumoniae in peripheral blood mononuclear cells of healthy blood donors. Transfusion, 2004, 44, 1072-1078.	1.6	21
15	Activation of caspase-3 during Chlamydia trachomatis-induced apoptosis at a late stage. Canadian Journal of Microbiology, 2019, 65, 135-143.	1.7	21
16	<i>Chlamydia pneumoniae</i> Resists Antibiotics in Lymphocytes. Antimicrobial Agents and Chemotherapy, 2003, 47, 1972-1975.	3.2	19
17	Chlamydia pneumoniae growth inhibition in human monocytic THP-1 cells and human epithelial HEp-2 cells by a novel phenoxazine derivative. Journal of Medical Microbiology, 2005, 54, 1143-1149.	1.8	17
18	Highâ€temperature adapted primitive <i><scp>P</scp>rotochlamydia</i> found in <i><scp>A</scp>canthamoeba</i> isolated from a hot spring can grow in immortalized human epithelial <scp>HEp</scp> â€2 cells. Environmental Microbiology, 2014, 16, 486-497.	3.8	17

#	Article	lF	Citations
19	Acanthamoeba containing endosymbiotic chlamydia isolated from hospital environments and its potential role in inflammatory exacerbation. BMC Microbiology, 2016, 16, 292.	3.3	17
20	Host range of obligate intracellular bacterium Parachlamydia acanthamoebae. Microbiology and Immunology, 2010, 54, 707-713.	1.4	16
21	Ciliates Expel Environmental Legionella-Laden Pellets To Stockpile Food. Applied and Environmental Microbiology, 2012, 78, 5247-5257.	3.1	16
22	Amoebal Endosymbiont Parachlamydia acanthamoebae Bn9 Can Grow in Immortal Human Epithelial HEp-2 Cells at Low Temperature; An In Vitro Model System to Study Chlamydial Evolution. PLoS ONE, 2015, 10, e0116486.	2.5	16
23	ATP bioluminescence values are significantly different depending upon material surface properties of the sampling location in hospitals. BMC Research Notes, 2015, 8, 807.	1.4	15
24	Ciliates promote the transfer of the gene encoding the extended-spectrum Â-lactamase CTX-M-27 between Escherichia coli strains. Journal of Antimicrobial Chemotherapy, 2011, 66, 527-530.	3.0	14
25	Visualization of hospital cleanliness in three Japanese hospitals with a tendency toward long-term care. BMC Research Notes, 2014, 7, 121.	1.4	14
26	Synergistic Costimulatory Effect of Chlamydia pneumoniae with Carbon Nanoparticles on NLRP3 Inflammasome-Mediated Interleukin- $1\hat{l}^2$ Secretion in Macrophages. Infection and Immunity, 2015, 83, 2917-2925.	2.2	14
27	<i>Chlamydia pneumoniae</i> enhances Interleukin 8 (ILâ€8) production with reduced azithromycin sensitivity under hypoxia. Apmis, 2019, 127, 131-138.	2.0	14
28	Involvement of Nicotinic Acetylcholine Receptors in Controlling Chlamydia pneumoniae Growth in Epithelial HEp-2 Cells. Infection and Immunity, 2003, 71, 3645-3647.	2.2	13
29	Protochlamydia Induces Apoptosis of Human HEp-2 Cells through Mitochondrial Dysfunction Mediated by Chlamydial Protease-Like Activity Factor. PLoS ONE, 2013, 8, e56005.	2.5	13
30	Draft Genome Sequence of High-Temperature-Adapted Protochlamydia sp. HS-T3, an Amoebal Endosymbiotic Bacterium Found in Acanthamoeba Isolated from a Hot Spring in Japan. Genome Announcements, 2015, 3, .	0.8	13
31	Diversity changes of microbial communities into hospital surface environments. Journal of Infection and Chemotherapy, 2017, 23, 439-445.	1.7	12
32	Inhibition of lymphocyte CD3 expression by Chlamydophila pneumoniae infection. Microbial Pathogenesis, 2008, 45, 290-296.	2.9	11
33	Impact of Free-Living Amoebae on Presence of Parachlamydia acanthamoebae in the Hospital Environment and Its Survival In Vitro without Requirement for Amoebae. Journal of Clinical Microbiology, 2010, 48, 3360-3365.	3.9	11
34	Chlamydia trachomatis serovar L2 infection model using human lymphoid Jurkat cells. Microbial Pathogenesis, 2012, 53, 1-11.	2.9	11
35	Effect of Ureaplasma parvum co-incubation on Chlamydia trachomatis maturation in human epithelial HeLa cells treated with interferon-γ. Journal of Infection and Chemotherapy, 2014, 20, 460-464.	1.7	11
36	Effect of thermal control of dry fomites on regulating the survival of human pathogenic bacteria responsible for nosocomial infections. PLoS ONE, 2019, 14, e0226952.	2.5	11

#	Article	IF	CITATIONS
37	Stability of <i>Chlamydophila pneumoniae </i> in a harsh environment without a requirement for acanthamoebae. Microbiology and Immunology, 2010, 54, 63-73.	1.4	10
38	Chlamydophila pneumoniae attachment and infection in low proteoglycan expressing human lymphoid Jurkat cells. Microbial Pathogenesis, 2011, 51, 209-216.	2.9	10
39	Walker occupancy has an impact on changing airborne bacterial communities in an underground pedestrian space, as small-dust particles increased with raising both temperature and humidity. PLoS ONE, 2017, 12, e0184980.	2.5	10
40	Endosymbiotic bacterium <i>Protochlamydia</i> can survive in acanthamoebae following encystation. Environmental Microbiology Reports, 2010, 2, 611-618.	2.4	9
41	Amoebal Endosymbiont Protochlamydia Induces Apoptosis to Human Immortal HEp-2 Cells. PLoS ONE, 2012, 7, e30270.	2.5	9
42	<i>Acanthamoeba</i> S13WT relies on its bacterial endosymbiont to backpack human pathogenic bacteria and resist <i>Legionella</i> infection on solid media. Environmental Microbiology Reports, 2018, 10, 344-354.	2.4	9
43	Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth. BMC Microbiology, 2014, 14, 330.	3.3	8
44	<i>Tetrahymena</i> promotes interactive transfer of carbapenemase gene encoded in plasmid between fecal <i>Escherichia coli</i> and environmental <i>Aeromonas caviae</i> Microbiology and Immunology, 2018, 62, 720-728.	1.4	7
45	<i>Chlamydia pneumoniae</i> i>infection suppresses <i>Staphylococcus</i> enterotoxin B-induced proliferation associated with down-expression of CD25 in lymphocytes. Canadian Journal of Microbiology, 2010, 56, 289-294.	1.7	6
46	Chlamydophila pneumoniae in human immortal Jurkat cells and primary lymphocytes uncontrolled by interferon- \hat{I}^3 . Microbes and Infection, 2013, 15, 192-200.	1.9	6
47	A domino-like chlamydial attachment process: concurrent Parachlamydia acanthamoebae attachment to amoebae is required for several amoebal released molecules and serine protease activity. Microbiology (United Kingdom), 2012, 158, 1607-1614.	1.8	5
48	Hypoxia promotes Chlamydia trachomatis L2/434/Bu growth in immortal human epithelial cells via activation of the PI3K-AKT pathway and maintenance of a balanced NAD+/NADH ratio. Microbes and Infection, 2020, 22, 441-450.	1.9	5
49	Ciliates promote the transfer of a plasmid encoding blaNDM-5 from Escherichia coli, isolated from a hospital in Japan, to other human pathogens. International Journal of Antimicrobial Agents, 2017, 49, 387-388.	2.5	4
50	Lateral Gene Transfer Between Protozoa-Related Giant Viruses of Family Mimiviridae and Chlamydiae. Evolutionary Bioinformatics, 2018, 14, 117693431878833.	1.2	4
51	A simple and short microbiology practical improves undergraduate nursing students' awareness of bacterial traits and ability to avoid spreading infections. BMC Medical Education, 2019, 19, 53.	2.4	4
52	<i>Chlamydia pneumoniae</i> Growth Inhibition in Cells by the Steroid Receptor Antagonist RU486 (Mifepristone). Antimicrobial Agents and Chemotherapy, 2008, 52, 1991-1998.	3.2	3
53	Draft Genome Sequences of <i>Legionella pneumophila</i> JR32 and Lp01 Laboratory Strains Domesticated in Japan. Genome Announcements, 2016, 4, .	0.8	3

Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia) Tj ETQq0 0 0 rgBT /Overlock 10 and Chemotherapy, 2018, 24, 130-137.

54

#	Article	IF	Citations
55	Chlamydia trachomatis isolated from cervicovaginal samples in Sapporo, Japan, reveals the circulation of genetically diverse strains. BMC Infectious Diseases, 2020, 20, 53.	2.9	3
56	Effect of the steroid receptor antagonist RU486 (mifepristone) on an IFN \hat{I}^3 -induced persistent Chlamydophila pneumoniae infection model in epithelial HEp-2 cells. Journal of Infection and Chemotherapy, 2012, 18, 22-29.	1.7	2
57	Long-term survival of Naegleria polaris from Antarctica after 10Âyears of storage at 4°C. Parasitology Research, 2018, 117, 937-941.	1.6	2
58	Impact of bacterial traces belonging to the Enterobacteriaceae on the prevalence of Chlamydia trachomatis in women visiting a community hospital in Japan. Journal of Infection and Chemotherapy, 2018, 24, 815-821.	1.7	2
59	Screening of hospital-manhole sewage using MacConkey agar with cefotaxime reveals extended-spectrum \hat{l}^2 -lactamase (ESBL)-producing Escherichia coli. International Journal of Antimicrobial Agents, 2019, 54, 831-833.	2.5	2
60	Chlamydia trachomatis Requires Functional Host-Cell Mitochondria and NADPH Oxidase $4/p38MAPK$ Signaling for Growth in Normoxia. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	2
61	A characteristic of polymorphic membrane protein F of Chlamydia trachomatis isolated from male urogenital tracts in Japan. Journal of Infection and Chemotherapy, 2015, 21, 842-848.	1.7	1
62	Subtle changes in host cell density cause a serious error in monitoring of the intracellular growth of Chlamydia trachomatis in a low-oxygen environment: Proposal for a standardized culture method. Journal of Microbiological Methods, 2018, 153, 84-91.	1.6	1
63	Complete genome and bimodal genomic structure of the amoebal symbiont Neochlamydia strain S13 revealed by ultra-long reads obtained from MinION. Journal of Human Genetics, 2020, 65, 41-48.	2.3	1
64	Usefulness of a 3D-printing air sampler for capturing live airborne bacteria and exploring the environmental factors that can influence bacterial dynamics. Research in Microbiology, 2021, 172, 103864.	2.1	1
65	Analysis of adult damselfly fecal material aids in the estimation of antibiotic-resistant <i>Enterobacterales </i> contamination of the local environment. PeerJ, 2018, 6, e5755.	2.0	1
66	Impact of Free-Living Amoebae on Presence of Parachlamydia acanthamoebae in the Hospital Environment and Its Survival <i>In Vitro</i> without Requirement for Amoebae. Journal of Clinical Microbiology, 2013, 51, 385-385.	3.9	0
67	Draft Genome Sequence of Chlamydia trachomatis Strain 54, Isolated from the Urogenital Tract of a Male in Japan. Genome Announcements, 2015, 3, .	0.8	0
68	Distribution of amoebal endosymbiotic environmental chlamydia Neochlamydia S13 via amoebal cytokinesis. Microbiology and Immunology, 2021, 65, 115-124.	1.4	0
69	Wild ciliates differ in susceptibility to Legionella pneumophila JR32. Microbiology (United Kingdom), 2021, 167, .	1.8	0
70	Title is missing!. , 2019, 14, e0226952.		0
71	Title is missing!. , 2019, 14, e0226952.		0
72	Title is missing!. , 2019, 14, e0226952.		0

ARTICLE IF CITATIONS
73 Title is missing!., 2019, 14, e0226952. 0