Serpil Z Takaç

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8963412/publications.pdf

Version: 2024-02-01

516561 501076 47 934 16 28 g-index citations h-index papers 49 49 49 1078 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deep eutectic solventâ€assisted synthesis of polyaniline by laccase enzyme. Journal of Chemical Technology and Biotechnology, 2021, 96, 1107-1115.	1.6	7
2	Remarkable effects of deep eutectic solvents on the esterification of lactic acid with ethanol over Amberlyst-15. Korean Journal of Chemical Engineering, 2020, 37, 46-53.	1.2	8
3	Use of deep eutectic solvents as catalyst: A mini-review. Green Processing and Synthesis, 2019, 8, 355-372.	1.3	128
4	Use of deep eutectic solvents in the enzyme catalysed production of ethyl lactate. Process Biochemistry, 2019, 84, 53-59.	1.8	18
5	Use of Olive Mill Wastewater as a Growth Medium for Superoxide Dismutase and Catalase Production. Clean - Soil, Air, Water, 2018, 46, 1700228.	0.7	7
6	Gliserol varlığında Rhodotorula glutinis çoğalma kinetiğinin incelenmesi ve katalaz aktivitesinin artırılması. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .	0.3	0
7	Kinetics of lipase-catalysed methyl gallate production in the presence of deep eutectic solvent. Biocatalysis and Biotransformation, 2017, 35, 407-416.	1.1	14
8	Improvement of superoxide dismutase activity using experimental design and radical promoters. Biotechnology and Biotechnological Equipment, 2017, 31, 1046-1054.	0.5	1
9	A Novel Two-Step Process to Co-valorize Antioxidant Rich By-products of Olive and Grape Processing Industries. Waste and Biomass Valorization, 2017, 8, 829-837.	1.8	3
10	Development of pH adjustment-based operational strategy to increase total phenol removal rate in biodegradation of olive mill wastewater by <i>Rhodotorula glutinis</i> . Desalination and Water Treatment, 2014, 52, 7277-7281.	1.0	6
11	Parameters and kinetics of olive mill wastewater dephenolization by immobilized <i>Rhodotorula glutinis </i> cells. Environmental Technology (United Kingdom), 2014, 35, 3074-3081.	1.2	4
12	Investigation of the simultaneous production of superoxide dismutase and catalase enzymes from <i>Rhodotorula glutinis</i> under different culture conditions. Artificial Cells, Blood Substitutes, and Biotechnology, 2012, 40, 338-344.	0.9	7
13	Development of process conditions for biodegradation of raw olive mill wastewater by Rhodotorula glutinis. International Biodeterioration and Biodegradation, 2012, 75, 75-82.	1.9	28
14	Kinetic study of hemicellulosic sugar production from hazelnut shells. Chemical Engineering Journal, 2012, 185-186, 23-28.	6.6	30
15	Oxygen transfer strategy modulates the productions of lipase and esterase enzymes by Candida rugosa. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 150-154.	1.8	10
16	Recovery of Phenolic Antioxidants from Olive Mill Wastewater. Recent Patents on Chemical Engineering, 2010, 2, 230-237.	0.5	21
17	EXTRACELLULAR LIPOLYTIC ENZYME ACTIVITY OF A NEWLY ISOLATED <i>DEBARYOMYCES HANSENII </i> Preparative Biochemistry and Biotechnology, 2009, 40, 28-37.	1.0	7
18	Impact of Inoculation Strategy on the Progress of <i>Candida rugosa </i> Cultivation. Artificial Cells, Blood Substitutes, and Biotechnology, 2009, 37, 130-137.	0.9	0

#	Article	IF	Citations
19	Media Formulation using Complex Organic Nutrients for Improved Activity, Productivity, and Yield of Candida rugosaLipase and Esterase Enzymes. Preparative Biochemistry and Biotechnology, 2009, 39, 323-341.	1.0	2
20	Effects of Alcohol and Buffer Treatments on the Activity and Enantioselectivity of <i>Candida rugosa </i> Lipase. Preparative Biochemistry and Biotechnology, 2009, 39, 124-141.	1.0	2
21	Recovery of Phenolic Antioxidants from Olive Mill Wastewater. Recent Patents on Chemical Engineering, 2009, 2, 230-237.	0.5	57
22	Effects of lipidic carbon sources on the extracellular lipolytic activity of a newly isolated strain of Bacillus subtilis. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1019-1025.	1.4	21
23	The enantioselective hydrolysis of racemic naproxen methyl ester in supercritical CO2 using Candida rugosa lipase. Journal of Supercritical Fluids, 2007, 43, 310-316.	1.6	21
24	Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. Journal of Hazardous Materials, 2007, 149, 720-724.	6.5	119
25	Impressive effect of immobilization conditions on the catalytic activity and enantioselectivity of Candida rugosa lipase toward S-Naproxen production. Process Biochemistry, 2007, 42, 1021-1027.	1.8	45
26	A parametric study on biphasic medium conditions for the enantioselective production of naproxen by Candida rugosa lipase. Applied Biochemistry and Biotechnology, 2007, 141, 15-26.	1.4	10
27	Adsorption of bovine serum albumin on polyether sulfone ultrafiltration membranes: Determination of interfacial interaction energy and effective diffusion coefficient. Journal of Membrane Science, 2006, 278, 251-260.	4.1	68
28	Effect of ionic environments on the adsorption and diffusion characteristics of serine alkaline protease enzyme in polyethersulfone ultrafiltration membranes. Journal of Colloid and Interface Science, 2006, 299, 806-814.	5.0	20
29	Nucleophile influence on the complex reaction network of 2-isopropylnaphthalene hydroperoxide decomposition. Chemical Engineering and Processing: Process Intensification, 2005, 44, 1197-1206.	1.8	0
30	Effect of reaction conditions on the product distribution in the liquid-phase acid-catalyzed etherification of 2-naphthol with methanol. Reaction Kinetics and Catalysis Letters, 2005, 85, 291-298.	0.6	1
31	A Parametric Study on Proteinâ€Membraneâ€lonic Environment Interactions for Membrane Fouling. Separation Science and Technology, 2005, 40, 1191-1212.	1.3	16
32	Decomposition of 2-isopropylnaphthalenehydroperoxide into 2-naphthol and acetone: reactor operation parameters. Applied Catalysis A: General, 2003, 238, 85-97.	2.2	2
33	Separation of the protease enzymes of Bacillus licheniformis from the fermentation medium by crossflow ultrafiltration. Journal of Chemical Technology and Biotechnology, 2000, 75, 491-499.	1.6	23
34	Metabolic flux analyses for serine alkaline protease production. Enzyme and Microbial Technology, 2000, 27, 793-805.	1.6	14
35	Serine alkaline protease overproduction capacity of Bacillus licheniformis. Enzyme and Microbial Technology, 2000, 26, 45-60.	1.6	18
36	Effects of organic and inorganic initiator-catalysts on the liquid-phase oxidation of 2-isopropylnaphthalene. Applied Catalysis A: General, 2000, 197, 279-287.	2.2	7

#	Article	IF	CITATIONS
37	EFFECTS OF PROCESS PARAMETERS ON THE KINETICS OF THE DECOMPOSITION OF 2-ISOPROPYLNAPHTHALENEHYDROPEROXIDE INTO 2-NAPHTHOL AND ACETONE. Reviews in Chemical Engineering, 2000, 16, .	2.3	6
38	Solvent–catalyst interactions in the decomposition process of 2-isopropylnaphthalenehydroperoxide into 2-naphthol and acetone. Applied Catalysis A: General, 1999, 183, 377-393.	2.2	7
39	Metabolic flux analysis for serine alkaline protease fermentation byBacillus licheniformis in a defined medium: Effects of the oxygen transfer rate., 1999, 64, 151-167.		61
40	Decomposition of 2-Isopropylnaphthalene Hydroperoxide into 2-Naphthol and Acetone in the Presence of Acetic Acid and H2O2. Industrial & Engineering Chemistry Research, 1999, 38, 3838-3846.	1.8	3
41	Metabolic flux analysis for serine alkaline protease fermentation by Bacillus licheniformis in a defined medium: Effects of the oxygen transfer rate. Biotechnology and Bioengineering, 1999, 64, 151-167.	1.7	1
42	Metabolic flux distribution for the optimized production of l-glutamate. Enzyme and Microbial Technology, 1998, 23, 286-300.	1.6	34
43	Selective oxidation of 2-isopropylnaphthalene to 2-isopropylnaphthalenehydroperoxide in a gas–liquid reaction system using CuO+NaOHaq catalyst. Chemical Engineering Journal, 1998, 71, 37-48.	6.6	12
44	Catalytic effect of NaOH on the liquid-phase oxidation of 2-isopropylnaphthalene. Applied Catalysis A: General, 1998, 172, 59-66.	2.2	17
45	Separation kinetics of l-phenylalanine by ion-exchange process. Biochemical Engineering Journal, 1998, 2, 101-112.	1.8	10
46	Bioconversion of trans-cinnamic acid to l-phenylalanine by l-phenylalanine ammonia-lyase of Rhodotorula glutinis: Parameters and kinetics. Enzyme and Microbial Technology, 1995, 17, 445-452.	1.6	32
47	Use of Deep Eutectic Solvents in the Treatment of Agro-Industrial Lignocellulosic Wastes for Bioactive Compounds. , 0, , .		6