Alfredo Berzal-Herranz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8963348/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Information Encoded by the Flavivirus Genomes beyond the Nucleotide Sequence. International Journal of Molecular Sciences, 2021, 22, 3738.	1.8	10
2	CriTER-A: A Novel Temperature-Dependent Noncoding RNA Switch in the Telomeric Transcriptome of Chironomus riparius. International Journal of Molecular Sciences, 2021, 22, 10310.	1.8	1
3	In Vitro Methods to Decipher the Structure of Viral RNA Genomes. Pharmaceuticals, 2021, 14, 1192.	1.7	0
4	Structure and function analysis of the essential 3′X domain of hepatitis C virus. Rna, 2020, 26, 186-198.	1.6	5
5	Two Examples of RNA Aptamers with Antiviral Activity. Are Aptamers the Wished Antiviral Drugs?. Pharmaceuticals, 2020, 13, 157.	1.7	6
6	The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. International Journal of Molecular Sciences, 2020, 21, 1479.	1.8	17
7	Potential of the Other Genetic Information Coded by the Viral RNA Genomes as Antiviral Target. Pharmaceuticals, 2019, 12, 38.	1.7	3
8	The HCV genome domains 5BSL3.1 and 5BSL3.3 act as managers of translation. Scientific Reports, 2018, 8, 16101.	1.6	9
9	A Dual Interaction Between the 5′- and 3′-Ends of the Melon Necrotic Spot Virus (MNSV) RNA Genome Is Required for Efficient Cap-Independent Translation. Frontiers in Plant Science, 2018, 9, 625.	1.7	3
10	The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization. Scientific Reports, 2017, 7, 43415.	1.6	18
11	Aptamers: Biomedical Interest and Applications. Pharmaceuticals, 2017, 10, 32.	1.7	6
12	Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes. Frontiers in Microbiology, 2017, 08, 546.	1.5	48
13	The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Frontiers in Microbiology, 2017, 8, 2093.	1.5	25
14	Development of Optimized Inhibitor RNAs Allowing Multisite-Targeting of the HCV Genome. Molecules, 2017, 22, 861.	1.7	10
15	The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation. Scientific Reports, 2016, 6, 25729.	1.6	26
16	Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES). Colloids and Surfaces B: Biointerfaces, 2016, 146, 808-817.	2.5	23
17	Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 281-301.e9.	2.3	15
18	RNA Aptamers as Molecular Tools to Study the Functionality of the Hepatitis C Virus CRE Region. Molecules, 2015, 20, 16030-16047.	1.7	9

#	Article	IF	CITATIONS
19	The 5′-tail of antisense RNAII of pMV158 plays a critical role in binding to the target mRNA and in translation inhibition of repB. Frontiers in Genetics, 2015, 6, 225.	1.1	11
20	Glucose Conjugation of Antiâ€HIVâ€1 Oligonucleotides Containing Unmethylated CpG Motifs Reduces Their Immunostimulatory Activity. ChemBioChem, 2015, 16, 584-591.	1.3	4
21	Current and Emerging Themes in the Structural Analysis of Viral RNA Genomes: Applications for the Development of Novel Therapeutic Drugs. Genomics and Computational Biology, 2015, 1, 15.	0.7	2
22	End-to-end crosstalk within the hepatitis C virus genome mediates the conformational switch of the 3′X-tail region. Nucleic Acids Research, 2014, 42, 567-582.	6.5	53
23	Activity of Coreâ€Modified 10–23 DNAzymes against HCV. ChemMedChem, 2014, 9, 2172-2177.	1.6	16
24	Detection of immune response activation by exogenous nucleic acids by a multiplex RT-PCR method. Molecular and Cellular Probes, 2014, 28, 181-185.	0.9	2
25	Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies. Scientific Reports, 2014, 4, 6242.	1.6	34
26	Structure-function relationship in viral RNA genomes: The case of hepatitis C virus. World Journal of Medical Genetics, 2014, 4, 6.	1.0	5
27	Unmasking the information encoded as structural motifs of viral RNA genomes: a potential antiviral target. Reviews in Medical Virology, 2013, 23, 340-354.	3.9	21
28	RNA aptamerâ€mediated interference of HCV replication by targeting the CREâ€5BSL3.2 domain. Journal of Viral Hepatitis, 2013, 20, 103-112.	1.0	18
29	The folding of the hepatitis C virus internal ribosome entry site depends on the 3′-end of the viral genome. Nucleic Acids Research, 2012, 40, 11697-11713.	6.5	37
30	Anti-HCV RNA Aptamers Targeting the Genomic cis-Acting Replication Element. Pharmaceuticals, 2012, 5, 49-60.	1.7	14
31	RNA self-cleavage activated by ultraviolet light-induced oxidation. Nucleic Acids Research, 2012, 40, 1748-1766.	6.5	29
32	HIV RNA dimerisation interference by antisense oligonucleotides targeted to the 5′ UTR structural elements. Virus Research, 2012, 169, 63-71.	1.1	9
33	An engineered inhibitor RNA that efficiently interferes with hepatitis C virus translation and replication. Antiviral Research, 2012, 94, 131-138.	1.9	27
34	The functional RNA domain 5BSL3.2 within the NS5B coding sequence influences hepatitis C virus IRES-mediated translation. Cellular and Molecular Life Sciences, 2012, 69, 103-113.	2.4	58
35	Analysis of mRNA Abundance and Stability by Ribonuclease Protection Assay. Methods in Molecular Biology, 2012, 809, 491-503.	0.4	1
36	In Vitro and Ex Vivo Selection Procedures for Identifying Potentially Therapeutic DNA and RNA Molecules. Molecules, 2010, 15, 4610-4638.	1.7	25

#	Article	IF	CITATIONS
37	Inhibition of HIV-1 Replication and Dimerization Interference by Dual Inhibitory RNAs. Molecules, 2010, 15, 4757-4772.	1.7	8
38	Analysis of the Mechanism of Action of the Antisense RNA That Controls the Replication of the repABC Plasmid p42d. Journal of Bacteriology, 2010, 192, 3268-3278.	1.0	30
39	Inhibition of hepatitis C virus replication and internal ribosome entry site-dependent translation by an RNA molecule. Journal of General Virology, 2009, 90, 1659-1669.	1.3	47
40	A long-range RNA–RNA interaction between the 5′ and 3′ ends of the HCV genome. Rna, 2009, 15, 1740-	1 75 2.	118
41	Significance of the Putative Upstream Polybasic Nuclear Localisation Sequence for the Biological Activity of Human Interferon-Gamma. Biotechnology and Biotechnological Equipment, 2009, 23, 1058-1062.	0.5	4
42	Embryonic Stem Cell-Specific miR302-367 Cluster: Human Gene Structure and Functional Characterization of Its Core Promoter. Molecular and Cellular Biology, 2008, 28, 6609-6619.	1.1	204
43	Inhibition of HIV-1 Replication by RNA-Based Strategies. Current HIV Research, 2008, 6, 500-514.	0.2	14
44	RNA Selection and Evolution <i>In Vitro:</i> Powerful Techniques for the Analysis and Identification of new Molecular Tools. Biotechnology and Biotechnological Equipment, 2007, 21, 272-282.	0.5	6
45	Inhibition of hepatitis C virus internal ribosome entry site-mediated translation by an RNA targeting the conserved IIIf domain. Cellular and Molecular Life Sciences, 2007, 64, 2994-3006.	2.4	30
46	Targets and Tools: Recent Advances in the Development of Anti-HCV Nucleic Acids. Infectious Disorders - Drug Targets, 2006, 6, 121-145.	0.4	15
47	Inhibition of HIV-1 replication by RNA targeted against the LTR region. Aids, 2005, 19, 863-870.	1.0	28
48	RNase/Anti-RNase Activities of the Bacterial parD Toxin-Antitoxin System. Journal of Bacteriology, 2005, 187, 3151-3157.	1.0	46
49	Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biological Chemistry, 2005, 386, 183-90.	1.2	48
50	Inhibition of HIV-1 Replication by an Improved Hairpin Ribozyme That Includes an RNA Decoy. RNA Biology, 2005, 2, 75-79.	1.5	10
51	An Experimental Method for Selecting Effective Target Sites and Designing Hairpin Ribozymes. , 2004, 252, 313-326.		2
52	Effect of 3' Terminal Codon Pairs with Different Frequency of Occurrence on the Expression of cat Gene in Escherichia coli. Current Microbiology, 2004, 48, 97-101.	1.0	6
53	Insights into the specificity of RNA cleavage by theEscherichia coliMazF toxin. FEBS Letters, 2004, 567, 316-320.	1.3	78

54 Design and Optimization of Sequence-Specific Hairpin Ribozymes. , 2004, 252, 327-338.

3

Alfredo Berzal-Herranz

#	Article	IF	CITATIONS
55	Ribozymes: recent advances in the development of RNA tools. FEMS Microbiology Reviews, 2003, 27, 75-97.	3.9	90
56	Preventing nondesired RNA-primed RNA extension catalyzed by T7 RNA polymerase. FEBS Journal, 2003, 270, 1458-1465.	0.2	43
57	Human interferon gamma: significance of the C-terminal flexible domain for its biological activity. Archives of Biochemistry and Biophysics, 2003, 413, 91-98.	1.4	24
58	HIV-1 TAR as Anchoring Site for Optimized Catalytic RNAs. Biological Chemistry, 2003, 384, 343-50.	1.2	9
59	Non-Shine-Dalgarno Initiators of Translation Selected from Combinatorial DNA Libraries. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 154-160.	1.0	4
60	Anchoring Hairpin Ribozymes to Long Target RNAs by Loop–Loop RNA Interactions. Oligonucleotides, 2002, 12, 1-9.	4.4	8
61	Selection of targets and the most efficient hairpin ribozymes for inactivation of mRNAs using a selfâ€cleaving RNA library. EMBO Reports, 2001, 2, 1112-1118.	2.0	16
62	The Antisense Sequence of the HIV-1 TAR Stem-Loop Structure Covalently Linked to the Hairpin Ribozyme Enhances Its Catalytic Activity Against Two Artificial Substrates. Oligonucleotides, 1999, 9, 33-42.	4.4	12
63	Comparative Kinetic Analysis of Structural Variants of the Hairpin Ribozyme Reveals Further Potential to Optimize Its Catalytic Performance. Oligonucleotides, 1999, 9, 433-440.	4.4	26
64	Specificity of the Hairpin Ribozyme. Journal of Biological Chemistry, 1999, 274, 29376-29380.	1.6	38
65	Ligation of RNA Molecules by the Hairpin Ribozyme. , 1997, 74, 349-356.		4
66	Hairpin Ribozyme Structure and Dynamics. ACS Symposium Series, 1997, , 360-368.	0.5	2
67	Determination of HCV RNA concentration by direct quantitation of the products from a single RT-PCR. Journal of Virological Methods, 1997, 69, 113-124.	1.0	3
68	In vitro selection of hairpin ribozymes. Journal of Hepatology, 1996, 25, 1002-1003.	1.8	2
69	The Capsicum L3 Gene-Mediated Resistance against the Tobamoviruses Is Elicited by the Coat Protein. Virology, 1995, 209, 498-505.	1.1	157
70	Novel system for analysis of group I 3' splice site reactions based on functionaltrans-interaction of the P1/P10 reaction helix with the ribozyme's catalytic core. Nucleic Acids Research, 1995, 23, 849-855.	6.5	9
71	lonic requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme. Biochemistry, 1993, 32, 1088-1095.	1.2	122
72	2'-Hydroxyl groups important for exon polymerization and reverse exon ligation reactions catalyzed by a group I ribozyme. Biochemistry, 1993, 32, 8981-8986.	1.2	8

Alfredo Berzal-Herranz

#	Article	IF	CITATIONS
73	Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates Genes and Development, 1993, 7, 130-138.	2.7	97
74	Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme EMBO Journal, 1993, 12, 2567-2573.	3.5	175
75	In vitro selection and evolution of RNA: applications for catalytic RNA, molecular recognition, and drug discovery FASEB Journal, 1993, 7, 106-112.	0.2	59
76	Novel RNA polymerization reaction catalyzed by a group I ribozyme EMBO Journal, 1993, 12, 3599-3605.	3.5	23
77	Four ribose 2'-hydroxyl groups essential for catalytic function of the hairpin ribozyme Journal of Biological Chemistry, 1993, 268, 19458-19462.	1.6	73
78	Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO Journal, 1993, 12, 2567-73.	3.5	48
79	Novel RNA polymerization reaction catalyzed by a group I ribozyme. EMBO Journal, 1993, 12, 3599-605.	3.5	12
80	Four ribose 2'-hydroxyl groups essential for catalytic function of the hairpin ribozyme. Journal of Biological Chemistry, 1993, 268, 19458-62.	1.6	51
81	DnaA dependent replication of plasmid R1 occurs in the presence of point mutations that disrupt the dnaA box oforiR. Nucleic Acids Research, 1992, 20, 2547-2551.	6.5	26
82	In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions Genes and Development, 1992, 6, 129-134.	2.7	132
83	Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature, 1991, 354, 320-322.	13.7	170
84	Control of replication of plasmid R1: the intergenic region betweencopAandrepAmodulates the level of expression ofrepA. Molecular Microbiology, 1991, 5, 97-108.	1.2	7
85	The kis and kid genes of the parD maintenance system of plasmid R1 form an operon that is autoregulated at the level of transcription by the co-ordinated action of the Kis and Kid proteins. Molecular Microbiology, 1991, 5, 2685-2693.	1.2	77
86	RNA aptamers: antiviral drugs of the future. , 0, , .		1
87	Application of RNA Aptamers to the Control of the Hepatitis C Virus-CRE Region Functionality . , 0, , .		Ο
88	Highly Conserved WNV Genomic RNA Domains are Potential Targets of Antiviral RNA Aptamers . , 0, , .		0
89	Multivalent Engineered RNA Molecules that Interfere with Hepatitis C Virus Translation and Replication . , 0, , .		0
90	Targeting the other genetic information coded by the viral RNA genomes. , 0, , .		0

91 The 3'UTR of the West Nile Virus genomic RNA is a potential antiviral target site. , 0, , . 0	#	Article	IF	CITATIONS
	91	The $3 \widehat{a} \in \mathbb{M}$ UTR of the West Nile Virus genomic RNA is a potential antiviral target site. , 0, , .		0